首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RC(rel) strains or when it was blocked with chloramphenicol in either RC(str) or RC(rel) strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RC(str) and RC(rel) strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane.  相似文献   

2.
Ribosomes and immature ribonucleoprotein particles were isolated from extracts of log-phase cells grown under various conditions. Quantitative measurements were made to determine the relative amounts of immature particles present in the extracts. The results indicate that the steady-state level of ribosomal precursors accounted for essentially a constant fraction of the total ribonucleic acid (RNA) of the cells. For cells with RNA-protein ratios between 0.43 and 0.65, about 1.6% of the total RNA occurred as immature ribonucleoprotein particles. Further, increased levels of immature particles were shown to be correlated with a reduced rate of RNA synthesis in cells recovering from chloramphenicol inhibition. The reduction was found to vary directly with the duration of pretreatment in chloramphenicol and, consequently, with the level of immature particles present in the cells.  相似文献   

3.
The effect of the ribonucleic acid (RNA) control (RC) gene on the biosynthesis of viral RNA has been examined in an RC(str) and an RC(rel) host infected with R17 RNA bacteriophage under conditions in which host RNA and protein synthesis were inhibited by the addition of rifampicin. Methionine and isoleucine starvation depressed viral RNA biosynthesis in an RC(str) host but not in an RC(rel) host. However, histidine starvation had little effect on viral RNA and protein synthesis in both RC(str) and RC(rel) cells, although it had a marked effect on host protein and RNA synthesis in an RC(str) host. Chloramphenicol relieved the effect of amino acid starvation on viral RNA synthesis in an RC(str) host. It is concluded that stringent control of viral RNA biosynthesis does not require the continued biosynthesis of the RC gene product (RNA or protein) and that a preformed RC gene product can regulate the biosynthesis of the exogenous RNA. It is suggested that the amino acid dependence of viral RNA biosynthesis is due to its obligatory coupling with the translation of the viral coat protein which lacks histidine. It may be inferred that the amino acid requirement of bacterial RNA is due to its coupling with the translation of a host-specific protein (other than the RC gene product) which requires a full complement of amino acids. Since chloramphenicol is known to permit ribosome movement in the absence of protein synthesis, it is suggested that ribosome movement along the nascent RNA chain is a sufficient condition for the continuation of RNA synthesis.  相似文献   

4.
Starvation for a required amino acid of normal or RC(str)Escherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RC(rel)E. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RC(str) phenotype but not in cells of RC(rel) phenotype. Inhibition of phage DNA synthesis in amino acid-starved RC(str) host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought.  相似文献   

5.
The effect of low concentrations of nalidixic acid on ribonucleic acid (RNA) synthesis in Escherichia coli was examined. It was observed that RNA synthesis in exponentially growing cells was not significantly affected, in harmony with previous studies. However, RNA synthesis was markedly depressed by nalidixic acid during starvation for an amino acid or during chloramphenicol treatment. This effect was not caused by increased killing or inhibition of nucleoside triphosphate synthesis by nalidixic acid. The pattern of radioactive uracil incorporation into transfer RNA or ribosomes was not changed by the drug. The sensitivity of RNA synthesis to nalidixic acid in the absence of protein production may be useful in probing the amino acid control of RNA synthesis.  相似文献   

6.
7.
A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis.  相似文献   

8.
An experiment previously interpreted to show a ribonucleic acid requirement for propagation of deoxyribonucleic replication is reexamined and the earlier interpretation is shown to be incorrect.  相似文献   

9.
Data have been obtained which imply that chloramphenicol stimulation of ribonucleic acid (RNA) synthesis is a result of the accumulation of aminoacyl transfer RNA (tRNA) molecules. The data also support the hypothesis that chloramphenicol exerts an additional effect upon the stimulation of RNA synthesis. This effect may be at the level of the ribosome or the aminoacyl tRNA, or of both. It is this effect combined with the presence of aminoacyl tRNA that results in stimulation by chloramphenicol of RNA synthesis.  相似文献   

10.
Ten cold-sensitive mutants defective in deoxyribonucleic acid (DNA) synthesis at 20 C have been identified among 218 cold-sensitive mutants isolated from a mutagenized population of Escherichia coli K-12. Four of the ten mutant alleles, dna-339 dna-340, dna-341, and dna-342, cotransduce with serB(+) and hence may be dnaC mutants. Two of these, dna-340 and dna-341, are recessive to their wild-type allele. The gene product of their wild-type allele is trans acting. Complementation tests have demonstrated that dna-340 and dna-341 are in the same cistron. The mapping of the remaining six mutations is in progress. In an attempt to determine whether LW4 and LW21 were initiator mutants, cultures of these strains were starved of an essential amino acid at 37 C and then incubated at 15 C with the essential amino acid. The amount of DNA synthesis observed under these circumstances was insignificant. These data are consistent with the idea that LW4 and LW21 are initiator mutants. However, attempts to integratively suppress LW4 and LW21 with F' factors were unsuccessful. To resolve the question of whether or not LW4 and LW21 are initiator mutants, more specific tests and criteria are required. Cultures of LW4 and LW21 were toluene treated and used to measure in vitro DNA synthesis. If the cells were incubated either at 15 or 20 C before toluene treatment, they were capable of markedly less DNA synthesis than if preincubation had not occurred. The amount of in vitro DNA synthesis is directly proportional to the amount of DNA synthesis occurring during preincubation in vivo; i.e., more DNA synthesis is observed at 20 than at 15 C. The fact that the cold-sensitive mutants are unable to synthesize DNA when supplied with deoxyribonucleoside triphosphates, DNA precursors, is evidence they are not defective in precursor synthesis.  相似文献   

11.
The effects of deoxyribonucleic acid (DNA) synthesis inhibition brought about in four different ways-thymidine starvation, nalidixic acid, hydroxyurea, and dnaB mutation-were examined in isogenic strains of Escherichia coli K-12. Three parameters were examined to determine whether there are strict correlations among them: (i) the extent of DNA synthesis inhibition; (ii) cell survival; and (iii) the rate of breakage of DNA molecules. There was no significant correlation between the extent of DNA synthesis inhibition and the rate of viability loss caused by the four DNA synthesis inhibitors, nor was there a strict correlation between the rate of occurrence of single-strand breaks in DNA and loss of viability. During treatment with hydroxyurea (0.1 M), no viability loss was observed and little, if any, single-strand breakage of DNA occurred. Both thymidine starvation and nalidixic-acid (20 mug/ml) treatment resulted in viability loss and breakage of DNA. For these latter two inhibitors, the two events appeared to be associated because greater rates of both viability loss and DNA breakage were observed for nalidixic acid compared with thymidine starvation. However, viability loss need not be associated with extensive breakage of DNA as demonstrated with a temperature-sensitive DNA synthesis mutant; at 39 C, viability loss occurred at a high rate without significant DNA breakage. With the other agents, the amount of DNA breakage accumulated when a cell population has sustained an average of one lethal hit was estimated to be about 30 single-strand breaks per genome. Differences in chromosomal and episomal breakage rates were observed.  相似文献   

12.
Prior treatment of Escherichia coli with nalidixic acid in nutritionally complete medium altered the subsequent pattern of deoxyribonucleic acid (DNA) synthesis normally observed in nutritionally deficient medium. Transfer of E. coli 15 TAU to an amino acid- and pyrimidine-deficient medium usually resulted in a 40 to 50% increase in DNA content. Previous treatment with nalidixic acid caused a 200 to 300% increase in DNA content under these conditions. The extent of this DNA synthesis depended on the duration of prior exposure to nalidixic acid. The maximal rate of synthesis was obtained after a 40- to 60-min exposure to nalidixic acid and was two to three times that of the control. The induction of this excessive DNA synthesis was prevented by chloramphenicol or phenethyl alcohol, but the synthesis of this DNA was only partially sensitive to these agents. With E. coli TAU-bar, the rate of DNA synthesis, after removal of nalidixic acid, was similar to that of E. coli 15 TAU, but the maximal amount of DNA synthesized was 180 to 185% of that initially present. Cesium chloride density gradient analysis demonstrated that DNA synthesis after removal of nalidixic acid occurs by a semiconservative mode of replication. The density distribution of this DNA was similar to that obtained after thymine starvation. These results suggest that nalidixic acid treatment may induce additional sites for DNA synthesis in E.coli.  相似文献   

13.
An Escherichia coli mutant dependent on exogenous transfer ribonucleic acid (RNA) for bulk RNA formation at 42 C has been isolated, starting from a parental strain permeable to RNA. In the absence of added transfer RNA at the high temperature, protein synthesis stopped, and the strain formed little if any ribosomal RNA.  相似文献   

14.
The synthesis of ribonucleic acid (RNA) and of protein in Escherichia coli during glucose-lactose diauxie lag have been examined. The rate of RNA synthesis is about 7%, of the corresponding rate during exponential growth and the rate of protein synthesis 10 to 15%. Inhibition of RNA synthesis occurs to the same extent in both rel and rel(+) strains. The RNA which accumulates during 20 min in diauxie lag is composed of about 50% ribosomal and transfer RNA species and about 50% of a fraction which resembles messenger RNA (mRNA) in its heterogeneous sedimentation properties. Decay of the heterogeneous fraction occurs in the presence of glucose and actinomycin D with a half-life of 3 min, the same as that of pulse-labeled mRNA; however, during the diauxie lag, the half-life of this RNA is about 25 min. Accumulation of the heterogeneous RNA is further increased when protein synthesis is blocked by chloramphenicol. The data suggest that the disproportionate accumulation of mRNA during diauxie lag and energy source shift-down may be attributed at least in part to increased stability of mRNA, but do not rule out a preferential synthesis of mRNA.  相似文献   

15.
Data are presented which support the view that l-lysine is transported by two systems in Streptococcus faecalis. The system with the higher affinity for l-lysine appears to be specific for l-lysine among the common amino acids and to require an energy source. The second system transports both l-lysine and l-arginine and does not appear to require an energy source. Both of these systems will accept hydroxy-l-lysine as a substrate as shown by the energy requirement for hydroxy-l-lysine transport and by the inhibition of uptake by l-arginine as well as by l-lysine. The affinity of both systems appears to be considerably lower for hydroxy-l-lysine than for l-lysine. A mutant of S. faecalis which is resistant to the growth inhibitory action of hydroxy-l-lysine appears to differ from the parent strain by having a defective l-lysine-specific transport system. In this mutant, hydroxy-l-lysine is not readily transported via the l-lysine-specific system because of the mutation or via the second system because of the high concentration of l-arginine present in the growth medium. This overall lack of transport prevents hydroxy-l-lysine from reaching inhibitory levels within the cell.  相似文献   

16.
17.
Ribosomal ribonucleic acid (RNA) synthesis and ribonucleoside triphosphate metabolism were studied in cultures of Escherichia coli subjected to starvation for inorganic nitrogen. In a strain that was under stringent control, a 50-fold reduction in the formation of both 16S and 23S RNA was accompanied by a severe restriction on nucleotide biosynthesis. These inhibitions were relieved in part by incubating the starved cells with amino acids. This result suggests that regulation by the functional RNA control (RC) gene is involved in the effect. This suggestion was confirmed by showing that the effector of the stringent response, guanosine-5'-diphosphate-2'- or 3'-diphosphate ((pp)G(pp)), accumulated at the onset of starvation and disappeared immediately when the amino acids were added. Ribosomal RNA synthesis was severely restricted and the same nucleotide, (pp)G(pp), accumulated at the onset of nitrogen starvation of a relaxed mutant too. These findings suggest that a control mechanism other than the one provided by the functional rel gene might operate to regulate RNA synthesis and that this mechanism is expressed through the synthesis of (pp)G(pp).  相似文献   

18.
Cells of Escherichia coli were labeled with precursors of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein, lysed with detergent, and examined by starch-block electrophoresis and CsCl density gradient centrifugation. A large amount of the DNA was seen to remain at positions of low electrophoretic mobility and light density along with tryptophan and arginine-containing proteins and some RNA. Addition of labeled, phenol-extracted DNA to unlabeled cells prior to lysis and electrophoresis showed that only a small amount of the DNA became associated during or after lysis. Sonic treatment of a lysate removed most of the DNA to a position of electrophoretic mobility and density similar to that of free DNA, whereas pronase and ribonuclease released only a part of the DNA. We concluded that binding of DNA to cell membranes or other cell components occurs in the cell prior to lysis and involves protein and probably a specific type of RNA.  相似文献   

19.
When cultures of Escherichia coli B/r growing at various rates were exposed to ultraviolet light, mitomycin C, or nalidixic acid, deoxyribonucleic acid (DNA) synthesis stopped but cell division continued for at least 20 min. The chromosome configurations in the cells which divided were estimated by determining the rate of DNA synthesis during the division cycle. The cultures were pulse-labeled with (14)C-thymidine, and the amount of label incorporated into cells of different ages was found by measuring the radioactivity in cells born subsequent to the labeling period. The cells which divided in the absence of DNA synthesis were those which had completed a round of chromosome replication prior to the treatments. It was concluded that completion of a round of replication is a necessary and sufficient condition of DNA synthesis for cell division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号