首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The brain of gastropod mollusks contains many giant neurons with polyploid genomic DNAs. Such DNAs are generated through repeated DNA endoreplication during body growth. However, it is not known what triggers DNA endoreplication in neurons. There are two possibilities: (1) DNAs are replicated in response to some unknown molecules in the hemolymph that reflect the nutritive status of the animal; or (2) DNAs are replicated in response to some unknown factors that are retrogradely transported through axons from the innervated target organs. We first tested whether hemolymph with rich nutrition could induce DNA endoreplication. We tested whether the transplanted brain exhibits enhanced DNA endoreplication like an endogenous brain does when transplanted into the homocoel of the body of a slug whose body growth is promoted by an increased food supply. However, no enhancement was observed in the frequency of DNA endoreplication when we compared the transplanted brains in the growth‐promoted and growth‐suppressed host slugs, suggesting that the humoral environment is irrelevant to triggering the body growth‐dependent DNA endoreplication. Next, we tested the requirement of target innervation by surgically dissecting a unilateral posterior pedal nerve of an endogenous brain. Substantially lower number of neurons exhibited DNA endoreplication in the pedal ganglion ipsilateral to the dissected nerve. These results support the view that enhanced DNA endoreplication is mediated by target innervation and is not brought about through the direct effect of humoral factors in the hemolymph during body growth. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 609–620, 2013  相似文献   

2.
3.
DNA endoreplication is the DNA synthesis without cell division, resulting in the generation of a nucleus containing a larger amount of genomic DNA compared to a normal diploid genome. There are many such giant neurons in the molluscan brain that are generated as a result of repeated endoreplication. However, it has been controversial whether the endoreplication is the whole genome replication (polyploidy) or the local amplification of the genes that are necessary for the neuron's function (polyteny/polysomy). Here in this study, we investigated these two possibilities by (1) immunohistochemical analysis of the distribution of 5'-bromodeoxyuridine incorporated into the nuclei of the brain neurons, and by (2) quantitative genomic PCR directed to two different genes expressed in specific brain regions. Our data supported the view that the DNA endoreplication is the whole genome replication rather than the local amplification of a specific genomic region.  相似文献   

4.
As key regulators of the cell proliferation cycle, cyclin-dependent kinases (CDKs) are attractive targets for the development of anti-tumor drugs. In the present study, harmine was identified from a collection of herbal compounds to be a specific inhibitor of Cdk1/cyclin B, Cdk2/cyclin A, and Cdk5/p25 with IC50 values at low micromoles. It displayed little effect on other serine/threonine and tyrosine kinases tested. The CDK inhibition by harmine is competitive with ATP-Mg2+, suggesting that it binds to the ATP-Mg2+-binding pocket of CDKs. In cytotoxicity assays, harmine exhibited a strong inhibitory effect on the growth and proliferation of carcinoma cells whereas it had no significant effect on quiescent fibroblasts. Further, harmine was found to block DNA replication in the carcinoma cells. Taken together, harmine is a selective inhibitor of CDKs and cell proliferation.  相似文献   

5.
Endoreplication is a variant type of DNA replication, consisting only of alternating G1 and S phases. Many types of Drosophila tissues undergo endoreplication. However, the timing and the extent to which a single endocycling macrochaete undergoes temporally programmed endoreplication during development are unclear. Here, we focused on the dynamics of endoreplication during posterior scutellar (pSC) macrochaete development. Quantitative analyses of C values in shaft cells and socket cells revealed a gradual rise from 8C and 4C at 8 hours after pupal formation (APF) to 72C and 24C at 29 hours APF, respectively. The validity of the values was further confirmed by the measurement of DNA content with a confocal laser microscope. BrdU incorporation assays demonstrated that shaft cells undergo four rounds of endoreplication from 18 to 29.5 hours APF. In contrast, socket cells undergo two rounds of endoreplication during the same period. Statistical analyses showed that the theoretical C values, based on BrdU assays, nearly coincide with the actually measured C values in socket cells, but not in shaft cells after 22 hours APF. These analyses suggest that socket cells undergo two rounds of endoreplication. However, the mechanism of endoreplication in the shaft cells may change from 22 hours APF, suggesting the possibility that shaft cells undergo two or four rounds of endoreplication during the periods. We also found that the timing of endoreplication differs, depending on the type of macrochaete. Moreover, endocycling in shaft cells of both the left and right sides of pSC bristle lineages occurs in the same pattern, indicating that the process is synchronized for specific types of macrochaete. Our findings suggest that endocycling in macrochaete cell lineages can be a model for understanding mechanisms of endoreplication at the single-cell level.  相似文献   

6.
Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of hitherto unknown function that has been conserved throughout angiosperm evolution, as a link in coordinating cell shape and nuclear DNA content in endoreplicated Arabidopsis trichomes. Loss-of-function mutations in BLT were found to enhance the multicellular trichome phenotype of mutants in the SIAMESE (SIM) gene, which encodes a repressor of endoreplication. Epistasis and overexpression experiments revealed that BLT encodes a key regulator of trichome branching. Additional experiments showed that BLT interacts both genetically and physically with STICHEL, another key regulator of trichome branching. Although blt mutants have normal trichome DNA content, overexpression of BLT results in an additional round of endoreplication, and blt mutants uncouple DNA content from morphogenesis in mutants with increased trichome branching, further emphasizing its role in linking cell shape and endoreplication.  相似文献   

7.
8.
Plants have capability to optimize its architecture by using CDK pathways. It involves diverse types of cyclin dependent kinase enzymes (CDKs). CDKs are classified in to eight classes (CDKA to CDKG and CKL) based on the recognized cyclin-binding domains. These enzymes require specific cyclin proteins to get activated. They form complex with cyclin subunits and phosphorylate key target proteins. Phosphorylation of these target proteins is essential to drive cell cycle further from one phase to another phase. During cell division, the activity of cyclin dependent kinase is controlled by CDK interactor/inhibitor of CDKs (ICK) and Kip-related proteins (KRPs). They bind with specific CDK/cyclin complex and help in controlling CDKs activity. Since cell cycle can be progressed further only by synthesis and destruction of cyclins, they are quickly degraded using ubiquitination-proteasome pathway. Ubiquitylation reaction is followed by DNA duplication and cell division process. These two processes are regulated by two complexes known as Skp1/cullin/F-box (SCF)-related complex and the anaphase-promoting complex/cyclosome (APC/C). SCF allows cell to enter from G1 to S phase and APC/C allows cell to enter from G2 to M phase. When all these above processes of cell division are going on, genes of cyclin dependent kinases gets activated one by one simultaneously and help in regulation of CDK pathways. How cell cycle is regulated by CDKs is discussed.  相似文献   

9.
Using cytophotometric method, after staining preparations with gallocyanin RNA content was examined in nucleus, nucleolus and cytoplasm of six species of angiospermal plants in successive (1-7 mm) segments of root representing successive zones of differentiation. During the cell cycle, RNA content duplicates in the nucleus, nucleolus and cytoplasm of meristematic cells. On the other hand, during growth and differentiation of parenchyma cells in species with endoreplication the content of nucleolar RNA does not increase in proportion with DNA content. High level of endoreplication is connected with high nucleolar RNA content and low cytoplasmic RNA content. In species without endoreplication at low nucleolar RNA content, a considerable growth of cytoplasmic RNA content takes place.  相似文献   

10.
DNA contents, ranging from 4C to more than 500C, were determined by a quantitative microfluorimetric assay in supramedullary neuron nuclei of the pufferfish Diodon holacanthus. The distribution of C values after ethidium bromide staining indicates an inter- and intra-individual variation in DNA contents which do not correspond to duplications of the total genome, suggesting that DNA replication is specific for particular genes (endoreplication). Moreover, the DNA content appears to be correlated with nuclear size. A relationship between the DNA amounts and the presence of AT- and GC-rich sequences has been shown.This work demonstrates, for the first time, DNA endoreplication in a specific neuronal type in vertebrates.  相似文献   

11.
DNA methylation plays a central role in the epigenetic regulation of gene expression during development and progression of cancer diseases. The inheritance of specific DNA methylation patterns are acquired in the early embryo and are specifically maintained after cellular replication via the DNA methyltransferase 1 (DNMT1). Recent studies have suggested that the enzymatic activity of DNMT1 is possibly modulated by phosphorylation of serine/threonine residues located in the N-terminal domain of the enzyme. In the present work, we report that cyclin-dependent kinases (CDKs) 1, 2 and 5 can phosphorylate Ser154 of human DNMT1 in vitro. Further evidence of phosphorylation of endogenous DNMT1 at position 154 by CDKs is also found in 293 cells treated with roscovitine, a specific inhibitor of CDK1, 2 and 5. To determine the importance of Ser154 phosphorylation, a mutant of DNMT1 encoding a single-point mutation at position 154 (S154A) was generated. This mutation induced a severe loss of enzymatic activity when compared to wild type DNMT1. Moreover, after treatment with 5-Aza-2′-Deoxycytidine (5-aza-dC), a faster decline in DNMT1 protein level was observed for HEK-293 cells expressing DNMT1(S154A) as compared to cells expressing wild type DNMT1. Our data suggest that phosphorylation of DNMT1 at Ser154 by CDKs is important for enzymatic activity and protein stability of DNMT1. Considering that tumour-associated cell cycle defects are often mediated by alterations in CDK activity, our results suggest that dysregulation of cell cycle via CDKs could induce abnormal phosphorylation of DNMT1 and lead to DNA hypermethylation often observed in cancer cells.  相似文献   

12.
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2–5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12–90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.  相似文献   

13.
Endoreplication, also called endoreduplication, is a cell cycle variant of multicellular eukaryotes in which mitosis is skipped and cells repeatedly replicate their DNA, resulting in cellular polyploidy. In recent years, research results have shed light on the molecular mechanism of endoreplication control, but the function of this cell-cycle variant has remained elusive. However, new evidence is at last providing insight into the biological relevance of cellular polyploidy, demonstrating that endoreplication is essential for developmental processes, such as cell fate maintenance, and is a prominent response to physiological conditions, such as pathogen attack or DNA damage. Thus, endoreplication is being revealed as an important module in plant growth that contributes to the robustness of plant life.  相似文献   

14.
Autoradiography has been used to confirm and to extend previous microspectrophotometric studies (Doerder and DeBault, 1975) on the timing of DNA synthesis during conjugation in Tetrahymena thermophila. The majority of DNA synthesis occurs at the expected periods preceding gamete formation and the two postzygotic divisions and during macronuclear development. DNA in new macronuclei is endoreplicated in an extremely discontinuous fashion. Under starvation conditions, the first endoreplication (2C to 4C) occurs immediately after the second postzygotic division when both new macronuclei and new micronuclei replicate. The second endoreplication (4C to 8C) does not occur until after separation of conjugants. If mating cells are kept under prolonged starvation conditions (20-24 hr), refeeding induces a partially synchronous division, after which an unexpectedly high percentage of cells incorporate tritiated thymidine into both macro- and micronuclei. Two previously undescribed periods of DNA synthesis were observed in the micronuclei of conjugating Tetrahymena. The first occurs during the early stages of meiotic prophase, before full crescent elongation. The second takes place in an extended period corresponding to macronuclear anlagen development, before conjugants have separated. CsCl gradient analyses indicate that, in micronuclear fractions, only main band DNA is being synthesized in both of these periods. However, in macronuclear fractions from both stages, a significant fraction (approximately 20%) of the DNA being synthesized has the buoyant density of ribosomal DNA. The finding that macro- and micronuclear DNA can be synthesized simultaneously in a single cell, both during conjugation and after refeeding starved exconjugants, raises interesting questions of how macro- or micronuclear-specific histones are targeted to the appropriate nuclei.  相似文献   

15.
16.
Studies on the CDC6 protein, which is crucial to the control of DNA replication in yeast and animal cells, are lacking in plants. We have isolated an Arabidopsis cDNA encoding the AtCDC6 protein and studied its possible connection to the occurrence of developmentally regulated endoreplication cycles. The AtCDC6 gene is expressed maximally in early S-phase, and its promoter contains an E2F consensus site that mediates the binding of a plant E2F/DP complex. Transgenic plants carrying an AtCDC6 promoter-beta-glucuronidase fusion revealed that it is active in proliferating cells and, interestingly, in endoreplicating cells. In particular, the extra endoreplication cycle that occurs in dark-grown hypocotyl cells is associated with upregulation of the AtCDC6 gene. This was corroborated using ctr1 Arabidopsis mutants altered in their endoreplication pattern. The ectopic expression of AtCDC6 in transgenic plants induced endoreplication and produced a change in the somatic ploidy level. AtCDC6 was degraded in a ubiquitin- and proteosome-dependent manner by extracts from proliferating cells, but it was degraded poorly by extracts from dark-grown hypocotyl endoreplicating cells. Our results indicate that endoreplication is associated with expression of the AtCDC6 gene and, most likely, the stability of its product; it also apparently requires activation of the retinoblastoma/E2F/DP pathway. These conclusions may apply to endoreplicating cells in other tissues of the plant and to endoreplicating cells in other eukaryotes.  相似文献   

17.
Using cytophotometric procedures, we measured the nuclear and nucleolar protein content of successive zones of growth and differentiation in consecutive (1-7 mm) root segments obtained from eight species of the Angiospermae after staining the preparations with Feulgen-Naphthol Yellow S (F-NYS). In meristematic cells the nuclear and nucleolar protein content was found to double during the cell cycle. In species in which differentiation occurs at the same time as nuclear DNA endoreplication, i.e. Vicia faba subsp. minor, V. faba subsp. major, Pisum sativum, Hordeum vulgare and Amaryllis belladonna, the pool of nuclear proteins observed during the G2 phase of the cell cycle was seen in the differentiated zone in nuclei containing 8C DNA. Species in which differentiation is not accompanied by the process of nuclear DNA endoreplication, i.e. Levisticum officinale, Tulipa kaufmanniana and Haemanthus katharinae, exhibited the highest nuclear proteins content during the G2 phase of the cell cycle; comparably high values were not found in the differentiated zone. A decrease in nucleolar protein content was observed during the process of differentiation, this tendency being more evident in the studied species that do not exhibit endoreplication.  相似文献   

18.
In animals, cyclin-dependent kinase inhibitors (CKIs) are important regulators of cell cycle progression. Recently, putative CKIs were also identified in plants, and in previous studies, Arabidopsis thaliana plants misexpressing CKIs were found to have reduced endoreplication levels and decreased numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act in a concentration-dependent manner and have an important function in cell proliferation as well as in cell cycle exit and in turning from a mitotic to an endoreplicating cell cycle mode. Endoreplication is usually associated with terminal differentiation; we observed, however, that cell fate specification proceeded independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells. On the one hand, this challenges plant cell cycle control with keeping CKIs locally controlled, and on the other hand this provides a possibility of linking cell cycle control in single cells with the supracellular organization of a tissue or an organ.  相似文献   

19.
Cuoghi B  Marini M 《Tissue & cell》2001,33(5):491-499
Exceptionally high DNA contents were found in supramedullary neuron (SN) nuclei of the pufferfish Diodon holacanthus by quantitative microfluorimetric assay. This phenomenon has been explained by endoreplication, the functional significance of which is still unclear. In this view, the peptidergic nature and large dimensions make the teleostean clustered SN an interesting model for investigating the relationships between endoreplication, nuclear morphology and biosynthetic cellular activity. In this paper, we present a cytochemical and ultrastructural study on the SN of D. holacanthus (Tetraodontiformes). The nucleolar and nucleus structures suggest an intense production of ribosomal components in order to satisfy high cellular demands for protein synthesis. Accordingly, the cytoplasmic compartment presents an extensive rough endoplasmic reticulum, well-developed Golgi apparatus and a remarkable vesicular traffic. These features suggest that SN are engaged in an intense process of protein biosynthesis. The SN are completely surrounded by processes of different types of glial cells. The glial cells may be considered part of the SN cluster.  相似文献   

20.
Nuclear DNA duplication in the absence of cell division (i.e. endoreplication) leads to somatic polyploidy in eukaryotic cells. In contrast to some invertebrate neurons, whose nuclei may contain up to 200,000-fold the normal haploid DNA amount (C), polyploid neurons in higher vertebrates show only 4C DNA content. To explore the mechanism that prevents extra rounds of DNA synthesis in these latter cells we focused on the chick retina, where a population of tetraploid retinal ganglion cells (RGCs) has been described. We show that differentiating chick RGCs that express the neurotrophic receptors p75 and TrkB while lacking retinoblastoma protein, a feature of tetraploid RGCs, also express p27Kip1. Two different short hairpin RNAs (shRNA) that significantly downregulate p27Kip1 expression facilitated DNA synthesis and increased ploidy in isolated chick RGCs. Moreover, this forced DNA synthesis could not be prevented by Cdk4/6 inhibition, thus suggesting that it is triggered by a mechanism similar to endoreplication. In contrast, p27Kip1 deficiency in mouse RGCs does not lead to increased ploidy despite previous observations have shown ectopic DNA synthesis in RGCs from p27Kip1−/− mice. This suggests that a differential mechanism is used for the regulation of neuronal endoreplication in mammalian versus avian RGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号