首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress, proteasome impairment and mitochondrial dysfunction are implicated as contributors to ageing and neurodegeneration. Using mouse neuronal cells, we showed previously that the reversible proteasome inhibitor, [N-benzyloxycarbonyl-Ile-Glu (O-t-bytul)-Ala-leucinal; (PSI)] induced excessive reactive oxygen species (ROS) that mediated mitochondrial damage and a caspase-independent cell death. Herein, we examined whether this insult persists in neuronal cells recovering from inhibitor removal over time. Recovery from proteasome inhibition showed a time and dose-dependent cell death that was accompanied by ROS overproduction, caspase activation and mitochondrial membrane permeabilization with the subcellular relocalizations of the proapoptotic proteins, Bax, cytochrome c and the apoptosis inducing factor (AIF). Caspase inhibition failed to promote survival indicating that cell death was caspase-independent. Treatments with the antioxidant N-acetyl-cysteine (NAC) were needed to promote survival in cell recovering from mild proteasome inhibition while overexpression of the antiapoptotic protein Bcl-xL together with NAC attenuated cell death during recovery from potent inhibition. Whereas inhibitor removal increased proteasome function, cells recovering from potent proteasome inhibition showed excessive levels of ubiquitinated proteins that required the presence of NAC for their removal. Collectively, these results suggest that the oxidative stress and mitochondrial inhibition induced by proteasome inhibition persists to influence neuronal cell survival when proteasome function is restored. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Casp8p41, a novel protein generated when HIV-1 protease cleaves caspase 8, independently causes NF-κB activation, proinflammatory cytokine production, and cell death. Here we investigate the mechanism by which Casp8p41 induces cell death. Immunogold staining and electron microscopy demonstrate that Casp8p41 localizes to mitochondria of activated primary CD4 T cells, suggesting mitochondrial involvement. Therefore, we assessed the dependency of Casp8p41-induced death on Bax/Bak and caspase 9. In wild-type (WT) mouse embryonic fibroblast (MEF) cells, Casp8p41 causes rapid mitochondrial depolarization (P < 0.001), yet Casp8p41 expression in Bax/Bak double-knockout (DKO) MEF cells does not. Similarly, caspase 9-deficient T cells (JMR cells), which express Casp8p41, undergo minimal cell death, whereas reconstituting these cells with caspase 9 (F9 cells) restores Casp8p41 cytotoxicity (P < 0.01). The infection of caspase 9-deficient cells with a green fluorescent protein (GFP) HIV-1 reporter virus results in cell death in 32% of infected GFP-positive cells, while the restoration of caspase 9 expression in these cells restores infected-cell killing to 68% (P < 0.05), with similar levels of viral replication between infections. Our data demonstrate that Casp8p41 requires Bax/Bak to induce mitochondrial depolarization, which leads to caspase 9 activation following either Casp8p41 expression or HIV-1 infection. This understanding allows the design of strategies to interrupt this form of death of HIV-1-infected cells.  相似文献   

3.
In mitochondria, oxidative phosphorylation and enzymatic oxidation of biogenic amines by monoamine oxidase produce reactive oxygen and nitrogen species, which are proposed to cause neuronal cell death in neurodegenerative disorders, including Parkinson’s and Alzheimer’s disease. In these disorders, mitochondrial dysfunction, increased oxidative stress, and accumulation of oxidation-modified proteins are involved in cell death in definite neurons. The interactions among these factors were studied by use of a peroxynitrite-generating agent, N-morpholino sydnonimine (SIN-1) and an inhibitor of complex I, rotenone, in human dopaminergic SH-SY5Y cells. In control cells, peroxynitrite nitrated proteins, especially the subunits of mitochondrial complex I, as 3-nitrotyrosine, suggesting that neurons are exposed to constant oxidative stress even under physiological conditions. SIN-1 and an inhibitor of proteasome, carbobenzoxy-l-isoleucyl-γ-t-butyl-l-analyl-l-leucinal (PSI), increased markedly the levels of nitrated proteins with concomitant induction of apoptosis in the cells. Rotenone induced mitochondrial dysfunction and accumulation and aggregation of proteins modified with acrolein, an aldehyde product of lipid peroxidation in the cells. At the same time, the activity of the 20S β-subunit of proteasome was reduced significantly, which degrades oxidative-modified protein. The mechanism was proved to be the result of the modification of the 20S β-subunit with acrolein and to the binding of other acrolein-modified proteins to the 20S β-subunit. Increased oxidative stress caused by SIN-1 treatment induced a decline in the mitochondrial membrane potential, ΔΨm, and activated mitochondrial apoptotic signaling and induced cell death in SH-SY5Y cells. As another pathway, p38 mitogen-activated protein (MAP) kinase and exracellular signal-regulated kinase (ERK) mediated apoptosis induced by SIN-1. On the other hand, a series of neuroprotective propargylamine derivatives, including rasagiline [N-propargyl-1(R)aminoindan]and (−)deprenyl, intervened in the activation of apoptotic cascade by reactive oxygen species-reactive nitrogen species in mitochondria through stabilization of the membrane potential, ΔΨm. In addition, rasagiline induced antiapoptotic Bcl-2 and glial cell line-derived neurotrophic factor (GDNF) in SH-SY5Y cells, which was mediated by the ERK-nuclear factor (NF)-κB pathway. These results are discussed in relation to the interaction of oxidative stress and mitochondria in the regulation of neuronal death and survival in neurodegenerative diseases.  相似文献   

4.
Mitochondria are the most important sensor for apoptosis. Extracellular adenosine is well reported to induce apoptosis of tumor cells. Here we found that extracellular adenosine suppresses the cell growth by induction of apoptosis in BEL-7404 liver cancer cells, and identified a novel mechanism that extracellular adenosine triggers apoptosis by increasing Reactive Oxygen Species (ROS) production and mitochondrial membrane dysfunction in the cells. We observed that adenosine increases ROS production, activates c-Caspase-8 and -9 and Caspase effectors, c-Caspase-3 and c-PARP, induces accumulation of apoptosis regulator Bak, decreases Bcl-xL and Mcl-1, and causes the mitochondrial membrane dysfunction and the release of DIABLO, Cytochrome C, and AIF from mitochondria to cytoplasm in the cells; ROS inhibitor, NAC significantly reduces adenosine-induced ROS production; it also shows the same degree of blocking adenosine-induced loss of mitochondrial membrane potential (MMP) and apoptosis. Our study first observed that adenosine increases ROS production in tumor cells and identified the positive feedback loop for ROS-mediated mitochondrial membrane dysfunction which amplifies the death signals in the cells. Our findings indicated ROS production and mitochondrial dysfunction play a key role in adenosine-induced apoptosis of 7404 cells.  相似文献   

5.
We have previously shown that inhibition of the proteolytic activity of the proteasome induces apoptosis and suppresses essential functions of activated human CD4+ T cells, and we report now the detailed mechanisms of apoptosis following proteasome inhibition in these cells. Here we show that proteasome inhibition by bortezomib activates the mitochondrial pathway of apoptosis in activated CD4+ T cells by disrupting the equilibrium of pro‐apoptotic and anti‐apoptotic proteins at the outer mitochondrial membrane (OMM) and by inducing the generation of reactive oxygen species (ROS). Proteasome inhibition leads to accumulation of pro‐apoptotic proteins PUMA, Noxa, Bim and p53 at the OMM. This event provokes mitochondrial translocation of activated Bax and Bak homodimers, which induce loss of mitochondrial membrane potential (ΔΨm). Breakdown of ΔΨm is followed by rapid release of pro‐apoptotic Smac/DIABLO and HtrA2 from mitochondria, whereas release of cytochrome c and AIF is delayed. Cytoplasmic Smac/DIABLO and HtrA2 antagonize IAP‐mediated inhibition of partially activated caspases, leading to premature activation of caspase‐3 followed by activation of caspase‐9. Our data show that proteasome inhibition triggers the mitochondrial pathway of apoptosis by activating mutually independent apoptotic pathways. These results provide novel insights into the mechanisms of apoptosis induced by proteasome inhibition in activated T cells and underscore the future use of proteasome inhibitors for immunosuppression. J. Cell. Biochem. 108: 935–946, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Proteasomal dysfunction may play a role in a number of neurodegenerative conditions, and in particular Parkinson's disease (PD) and related Lewy body (LB) diseases. Application of proteasomal inhibitors to neuronal cell culture systems is associated with survival-promoting effects or with cell death depending on the model system. We have applied pharmacological proteasomal inhibitors to cultured neonatal mouse sympathetic neurons in order to investigate whether these catecholaminergic neurons, which are affected in PD, are sensitive to proteasomal inhibition and, if so, which cell death pathway is activated. We report here that proteasomal inhibition leads to apoptotic death of mouse sympathetic neurons. This death is accompanied by caspase 3 activation and cytochrome c release from the mitochondria and is abrogated by caspase inhibition. Bax deletion prevented both cytochrome c release and caspase 3 activation, and also provided complete protection against proteasomal inhibition-induced death. Bcl-2 overexpression achieved a similar survival-promoting effect. There was no change in Bax levels following proteasomal inhibition, suggesting that Bax itself is not regulated by the proteasome in this cell culture system, and that a primary increase in Bax is unlikely to account for death. In contrast, levels of the BH3-only protein, Bim, increased with proteasomal inhibition. We conclude that proteasomal inhibition of mouse sympathetic neurons activates the intrinsic apoptotic pathway involving bcl-2 family members and the mitochondria.  相似文献   

8.
Mitochondrial dysfunction is an underpinning event in many neurodegenerative disorders. Less clear, however, is how mitochondria become injured during neuronal demise. Nitric oxide (NO) evokes rapid mitochondrial fission in cortical neurons. Interestingly, proapoptotic Bax relocates from the cytoplasm into large foci on mitochondrial scission sites in response to nitrosative stress. Antiapoptotic Bcl-xL does not prevent mitochondrial fission despite its ability to block Bax puncta formation on mitochondria and to mitigate neuronal cell death. Mitofusin 1 (Mfn1) or dominant-negative dynamin-related protein 1(K38A) (Drp1(k38A)) inhibits mitochondrial fission and Bax accumulation on mitochondria induced by exposure to an NO donor. Although NO is known to cause a bioenergetic crisis, lowering ATP by glycolytic or mitochondrial inhibitors neither induces mitochondrial fission nor Bax foci formation on mitochondria. Taken together, these data indicate that the mitochondrial fission machinery acts upstream of the Bcl-2 family of proteins in neurons challenged with nitrosative stress.  相似文献   

9.
Glutamate-mediated excitotoxicity, which is associated with reactive oxygen species (ROS), is hypothesized to be a major contributor to pathological cell death in the mammalian central nervous system, and to be involved in many acute and chronic brain diseases. Here, we showed that isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis (Gu), one of the most frequently prescribed oriental herbal medicines, protected HT22 hippocampal neuronal cells from glutamate-induced oxidative stress. In addition, we clarified the molecular mechanisms by which it protects against glutamate-induced neuronal cell death. ISL reversed glutamate-induced ROS production and mitochondrial depolarization, as well as glutamate-induced changes in expression of the apoptotic regulators Bcl-2 and Bax. Pretreatment of HT22 cells with ISL suppresses the release of apoptosis-inducing factor from mitochondria into the cytosol. Taken together, our results suggest that ISL may protect against mitochondrial dysfunction by limiting glutamate-induced oxidative stress. In conclusion, our results demonstrated that ISL isolated from Gu has protective effects against glutamate-induced mitochondrial damage and hippocampal neuronal cell death. We expect ISL to be useful in the development of drugs to prevent or treat neurodegenerative diseases.  相似文献   

10.
Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-l-cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.  相似文献   

11.
Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains elusive. Here we report that inhibiting the fission machinery in Bax/Bak-mediated apoptosis, by down-regulating of Drp1 or hFis1, prevents the fragmentation of the mitochondrial network and partially inhibits the release of cytochrome c from the mitochondria but fails to block the efflux of Smac/DIABLO. In addition, preventing mitochondrial fragmentation does not inhibit cell death induced by Bax/Bak-dependent death stimuli, in contrast to the effects of Bcl-xL or caspase inhibition. Therefore, the fission of mitochondria is a dispensable event in Bax/Bak-dependent apoptosis.  相似文献   

12.
Ursodeoxycholic acid (UDCA) has been shown to be a strong modulator of the apoptotic threshold in both hepatic and nonhepatic cells. 3-Nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, appears to cause apoptotic neuronal cell death in the striatum, reminiscent of the neurochemical and anatomical changes associated with Huntington's disease (HD). This study was undertaken (a) to characterize further the mechanism by which 3-NP induces apoptosis in rat neuronal RN33B cells and (b) to determine if and how the taurine-conjugated UDCA, tauroursodeoxycholic acid (TUDCA), inhibits apoptosis induced by 3-NP. Our results indicate that coincubation of cells with TUDCA and 3-NP was associated with an approximately 80% reduction in apoptosis (p < 0.001), whereas neither taurine nor cyclosporin A, a potent inhibitor of the mitochondrial permeability transition (MPT), inhibited cell death. Moreover, TUDCA, as well as UDCA and its glycine-conjugated form, glycoursodeoxycholic acid, prevented mitochondrial release of cytochrome c (p < 0.001), which probably accounts for the observed inhibition of DEVD-specific caspase activity and poly(ADP-ribose) polymerase cleavage. 3-NP decreased mitochondrial transmembrane potential (p < 0.001) and increased mitochondrial-associated Bax protein levels (p < 0.001). Coincubation with TUDCA was associated with significant inhibition of these mitochondrial membrane alterations (p < 0.01). The results suggest that TUDCA inhibits 3-NP-induced apoptosis via direct inhibition of mitochondrial depolarization and outer membrane disruption, together with modulation of Bax translocation from cytosol to mitochondria. In addition, cell death by 3-NP apparently occurs through pathways that are independent of the MPT.  相似文献   

13.
Bax-dependent apoptosis induced by ceramide in HL-60 cells   总被引:11,自引:0,他引:11  
Kim HJ  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2001,505(2):264-268
Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. In this study, we show that antisense bax inhibits cytochrome c release, poly(ADP-ribose)polymerase cleavage and cell death induced by ceramide in HL-60 cells. In addition, ceramide induces translocation of Bax to mitochondria. The addition of the broad spectrum caspase inhibitor zVAD-fmk prevented ceramide-induced apoptotic cell death but did not inhibit translocation of Bax and mitochondrial cytochrome c release. Furthermore, ceramide inhibits the expression of the antiapoptotic protein Bcl-xL with an increase in the ratio of Bax to Bcl-xL. These data provide direct evidence that Bax plays an important role in regulating ceramide-induced apoptosis.  相似文献   

14.
Bax is translocated into the mitochondrial membrane and oligomerized therein to initiate mitochondrial apoptotic signaling. Our previous study indicated that reactive oxygen species (ROS)-mediated activation of mitogen-activated protein kinase (MAPK) and caspase is critically involved in 6-hydroxydopamine (6-OHDA)-mediated neurodegeneration. Here, we specifically attempted to examine whether and how these death signaling pathways may be linked to Bax translocation and oligomerization. We found that 6-OHDA treatment triggered translocation and oligomerization of Bax onto the mitochondria in MN9D dopaminergic neuronal cells. These events preceded cytochrome c release into the cytosol. Cross-linking assay revealed that co-treatment with a ROS scavenger or a pan-caspase inhibitor inhibited 6-OHDA-induced Bax oligomerization. Among several candidates of ROS-activated MAPKs and caspases, we found that co-treatment with PD169316 or VDVAD specifically inhibited 6-OHDA-induced Bax oligomerization, suggesting critical involvement of p38 MAPK and caspase-2. Consequently, overexpression of a dominant negative form of p38 MAPK or a shRNA-mediated knockdown of caspase-2 indeed inhibited 6-OHDA-induced Bax oligomerization. However, activation of p38 MAPK and caspase-2 was independently linked to oligomerization of Bax. This specificity was largely confirmed with a Bax 6A7 antibody known to detect activated forms of Bax on the mitochondria. Taken together, our data suggest that there is an independent amplification loop of Bax translocation and oligomerization via caspase-2 and p38 MAPK during ROS-mediated dopaminergic neurodegeneration.  相似文献   

15.
Astrocytes, the most abundant glial cell population in the central nervous system (CNS), play physiological roles in neuronal activities. Oxidative insult induced by the injury to the CNS causes neural cell death through extrinsic and intrinsic pathways. This study reports that reactive oxygen species (ROS) generated by exposure to the strong oxidizing agent, hexavalent chromium (Cr(VI)) as a chemical‐induced oxidative stress model, caused astrocytes to undergo an apoptosis‐like cell death through a caspase‐3‐independent mechanism. Although activating protein‐1 (AP‐1) and NF‐κB were activated in Cr(VI)‐primed astrocytes, the inhibition of their activity failed to increase astrocytic cell survival. The results further indicated that the reduction in mitochondrial membrane potential (MMP) was accompanied by an increase in the levels of ROS in Cr(VI)‐primed astrocytes. Moreover, pretreatment of astrocytes with N‐acetylcysteine (NAC), the potent ROS scavenger, attenuated ROS production and MMP loss in Cr(VI)‐primed astrocytes, and significantly increased the survival of astrocytes, implying that the elevated ROS disrupted the mitochondrial function to result in the reduction of astrocytic cell viability. In addition, the nuclear expression of apoptosis‐inducing factor (AIF) and endonuclease G (EndoG) was observed in Cr(VI)‐primed astrocytes. Taken together, evidence shows that astrocytic cell death occurs by ROS‐induced oxidative insult through a caspase‐3‐independent apoptotic mechanism involving the loss of MMP and an increase in the nuclear levels of mitochondrial pro‐apoptosis proteins (AIF/EndoG). This mitochondria‐mediated but caspase‐3‐independent apoptotic pathway may be involved in oxidative stress‐induced astrocytic cell death in the injured CNS. J. Cell. Biochem. 107: 933–943, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
BACKGROUND : Arsenic is a ubiquitous element that is a potential carcinogen and teratogen and can cause adverse developmental outcomes. Arsenic exerts its toxic effects through the generation of reactive oxygen species (ROS) that include hydrogen peroxide (H2O2), superoxide‐derived hydroxyl ion, and peroxyl radicals. However, the molecular mechanisms by which arsenic induces cytotoxicity in murine embryonic maxillary mesenchymal (MEMM) cells are undefined. METHODS : MEMM cells in culture were treated with different concentrations of pentavalent sodium arsenate [As (V)] for 24 or 48 hr and various end points measured. RESULTS : Treatment of MEMM cells with the pentavalent form of inorganic arsenic resulted in caspase‐mediated apoptosis, accompanied by generation of ROS and disruption of mitochondrial membrane potential. Treatment with caspase inhibitors markedly blocked apoptosis. In addition, the free radical scavenger N‐acetylcysteine dramatically attenuated arsenic‐mediated ROS production and apoptosis, and exposure to arsenate increased Bax and decreased Bcl protein levels in MEMM cells. CONCLUSIONS : Taken together, these findings suggest that in MEMM cells arsenate‐mediated oxidative injury acts as an early and upstream initiator of the cell death cascade, triggering cytotoxicity, mitochondrial dysfunction, altered Bcl/Bax protein ratios, and activation of caspase‐9. Birth Defects Research (Part A), 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
A high resistance and heterogeneous response to conventional anti-cancer chemotherapies characterize malignant cutaneous melanoma, the most aggressive and deadly form of skin cancer. Withaferin A (WFA), a withanolide derived from the medicinal plant Withania somnifera, has been reported for its anti-tumorigenic activity against various cancer cells. For the first time, we examined the death-inducing potential of WFA against a panel of four different human melanoma cells and investigated the cellular mechanisms involved. WFA induces apoptotic cell death with various IC50 ranging from 1.8 to 6.1 μM. The susceptibility of cells toward WFA-induced apoptosis correlated with low Bcl-2/Bax and Bcl-2/Bim ratios. In all cell lines, the apoptotic process triggered by WFA involves the mitochondrial pathway and was associated with Bcl-2 down regulation, Bax mitochondrial translocation, cytochrome c release into the cytosol, transmembrane potential (ΔΨm) dissipation, caspase 9 and caspase 3 activation and DNA fragmentation. WFA cytotoxicity requires early reactive oxygen species (ROS) production and glutathione depletion, the inhibition of ROS increase by the antioxidant N-acetylcysteine resulting in complete suppression of mitochondrial and nuclear events. Altogether, these results support the therapeutic potential of WFA against human melanoma.  相似文献   

18.
An Arabidopsisprotoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsismesophyll protoplasts expressing murine BaxcDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivotargeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N-acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsisnucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of ArabidopsisBax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.  相似文献   

19.
Previously, we have shown that the release of AIF from mitochondria is required for As2O3-induced cell death in human cervical cancer cells, and that reactive oxygen species (ROS) is necessary for AIF release from mitochondria. In this study, we further investigated the role of MAPKs in ROS-mediated mitochondrial apoptotic cell death triggered by As2O3. As2O3-induced apoptotic cell death in HeLa cells was associated with activation and mitochondrial translocation of Bax, a marked phosphorylation of Bcl-2, reduction of Bcl-2 and Bax interaction, dissipation of mitochondrial membrane potential. Using small interfering RNA, reduced Bax expression effectively attenuated As2O3-induced mitochondrial membrane potential loss and apoptotic cell death. Moreover, the phosphorylation of Bcl-2 induced by As2O3 diminished its ability to bind to Bax. Treatment of cells with As2O3 activated both the p38 MAPK and JNK pathways. Mitochondrial translocation of Bax was completely suppressed in the presence of p38 MAPK inhibitor PD169316 or si-p38 MAPK. The As2O3-induced Bcl-2 phosphorylation was attenuated largely by JNK inhibition using SP600125 or si-JNK and to some extent by p38 MAPK inhibition with PD169316 or si-p38 MAPK. In addition, N-acetyl-L-cystein (NAC), a thiol-containing anti-oxidant, completely blocked As2O3-induced p38 MAPK and JNK activations, mitochondria translocation of Bax, and phosphorylation of Bcl-2. These results support a notion that ROS-mediated activations of p38 MAPK and JNK in response to As2O3 treatment signals activation of Bax and phosphorylation of Bcl-2, resulting in mitochondrial apoptotic cell death in human cervical cancer cells.  相似文献   

20.
An increased intracellular methylglyoxal (MGO) under hyperglycemia led to pancreatic beta cell death. However, its mechanism in which way with MGO induced beta cell death remains unknown. We investigated both high glucose and MGO treatment significantly inclined intracellular MGO concentration and inhibited cell viability in vitro. MGO treatment also triggered intracellular advanced glycation end products (AGEs) formation, declined mitochondrial membrane potential (MMP), increased oxidative stress and the expression of ER stress mediators Grp78/Bip and p-PERK; activated mitochondrial apoptotic pathway, which could mimic by Glo1 knockdown. Aminoguanidine (AG), a MGO scavenger, however, prevented AGEs formation and MGO-induced cell death by inhibiting oxidative stress and ER stress. Furthermore, both antioxidant N-acetylcysteine (NAC) and ER stress inhibitor 4-phenylbutyrate (4-PBA) could attenuate MGO-induced cell death through ameliorating ER stress. MGO treatment down-regulated Ire1α, a key ER stress mediator, increased JNK phosphorylation and activated mitochondrial apoptosis; down-regulated Bcl-2 expression which could be attenuated by the JNK inhibitor SP600125 and further inhibited cytochrome c leakage from mitochondria and blocked the conversion of pro caspase 3 into cleaved caspase 3, all these might contribute to the inhibition of INS-1 cell apoptosis. Ire1α down-regulation by Ire1α siRNAs mimicked MGO-induced cytotoxicity by activating the JNK phosphorylation and mitochondrial apoptotic pathway. In summary, we demonstrated that increased intracellular MGO induced cytotoxicity in INS-1 cells primarily by activating oxidative stress and further triggering mitochondrial apoptotic pathway, and ER stress-mediated Ire1α-JNK pathway. These findings may have implication on new mechanism of glucotoxicity-mediated pancreatic beta-cell dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号