首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general.  相似文献   

2.
Development of the facial skeleton depends on interactions between intrinsic factors in the skeletal precursors and extrinsic signals in the facial environment. Hox genes have been proposed to act cell-intrinsically in skeletogenic cranial neural crest cells (CNC) for skeletal pattern. However, Hox genes are also expressed in other facial tissues, such as the ectoderm and endoderm, suggesting that Hox genes could also regulate extrinsic signalling from non-CNC tissues. Here we study moz mutant zebrafish in which hoxa2b and hoxb2a expression is lost and the support skeleton of the second pharyngeal segment is transformed into a duplicate of the first-segment-derived jaw skeleton. By performing tissue mosaic experiments between moz(-) and wild-type embryos, we show that Moz and Hox genes function in CNC, but not in the ectoderm or endoderm, to specify the support skeleton. How then does Hox expression within CNC specify a support skeleton at the cellular level? Our fate map analysis of skeletal precursors reveals that Moz specifies a second-segment fate map in part by regulating the interaction of CNC with the first endodermal pouch (p1). Removal of p1, either by laser ablation or in the itga5(b926) mutant, reveals that p1 epithelium is required for development of the wild-type support but not the moz(-) duplicate jaw-like skeleton. We present a model in which Moz-dependent Hox expression in CNC shapes the normal support skeleton by instructing second-segment CNC to undergo skeletogenesis in response to local extrinsic signals.  相似文献   

3.
Cartilage of the vertebrate jaw is derived from cranial neural crest cells that migrate to the first pharyngeal arch and form a dorsal "maxillary" and a ventral "mandibular" condensation. It has been assumed that the former gives rise to palatoquadrate and the latter to Meckel's (mandibular) cartilage. In anamniotes, these condensations were thought to form the framework for the bones of the adult jaw and, in amniotes, appear to prefigure the maxillary and mandibular facial prominences. Here, we directly test the contributions of these neural crest condensations in axolotl and chick embryos, as representatives of anamniote and amniote vertebrate groups, using molecular and morphological markers in combination with vital dye labeling of late-migrating cranial neural crest cells. Surprisingly, we find that both palatoquadrate and Meckel's cartilage derive solely from the ventral "mandibular" condensation. In contrast, the dorsal "maxillary" condensation contributes to trabecular cartilage of the neurocranium and forms part of the frontonasal process but does not contribute to jaw joints as previously assumed. These studies reveal the morphogenetic processes by which cranial neural crest cells within the first arch build the primordia for jaw cartilages and anterior cranium.  相似文献   

4.
We present a developmental perspective on the concept of phylotypic and phenotypic stages of craniofacial development. Within orders of avians and mammals, a phylotypic period exists when the morphology of the facial prominences is minimally divergent. We postulate that species-specific facial variations arise as a result of subtle shifts in the timing and the duration of molecular pathway activity (e.g., heterochrony), and present evidence demonstrating a critical role for Wnt and FGF signaling in this process. The same molecular pathways that shape the vertebrate face are also implicated in craniofacial deformities, indicating that comparisons between and among animal species may represent a novel method for the identification of human craniofacial disease genes.  相似文献   

5.
6.
Faces convey a wealth of social signals. A dominant view in face-perception research has been that the recognition of facial identity and facial expression involves separable visual pathways at the functional and neural levels, and data from experimental, neuropsychological, functional imaging and cell-recording studies are commonly interpreted within this framework. However, the existing evidence supports this model less strongly than is often assumed. Alongside this two-pathway framework, other possible models of facial identity and expression recognition, including one that has emerged from principal component analysis techniques, should be considered.  相似文献   

7.
Recent evidence suggests that while reflectance information (including color) may be more diagnostic for familiar face recognition, shape may be more diagnostic for unfamiliar face identity processing. Moreover, event-related potential (ERP) findings suggest an earlier onset for neural processing of facial shape compared to reflectance. In the current study, we aimed to explore specifically the roles of facial shape and color in a familiarity decision task using pre-experimentally familiar (famous) and unfamiliar faces that were caricatured either in shape-only, color-only, or both (full; shape + color) by 15%, 30%, or 45%. We recorded accuracies, mean reaction times, and face-sensitive ERPs. Performance data revealed that shape caricaturing facilitated identity processing for unfamiliar faces only. In the ERP data, such effects of shape caricaturing emerged earlier than those of color caricaturing. Unsurprisingly, ERP effects were accentuated for larger levels of caricaturing. Overall, our findings corroborate the importance of shape for identity processing of unfamiliar faces and demonstrate an earlier onset of neural processing for facial shape compared to color.  相似文献   

8.
The faces of birds and mammals exhibit remarkable morphologic diversity, but how variation arises is not well-understood. We have previously demonstrated that a region of facial ectoderm, which we named the frontonasal ectodermal zone (FEZ), regulates proximo-distal extension and dorso-ventral polarity of the upper jaw in birds. In this work, we examined the equivalent ectoderm in murine embryos and determined that the FEZ is conserved in mice. However, our results revealed that fundamental differences in the organization and constituents of the FEZ in mice and chicks may underlie the distinct growth characteristics that distinguish mammalian and avian embryos during the earliest stages of development. Finally, current models suggest that neural crest cells regulate size and shape of the upper jaw, and that signaling by Bone morphogenetic proteins (Bmps) within avian neural crest helps direct this process. Here we show that Bmp expression patterns in neural crest cells are regulated in part by signals from the FEZ. The results of our work reconcile how a conserved signaling center that patterns growth of developing face may generate morphologic diversity among different animals. Subtle changes in the organization of gene expression patterns in the FEZ could underlie morphologic variation observed among and within species, and at extremes, variation could produce disease phenotypes.  相似文献   

9.
10.
Vertebrate jaw muscle anatomy is conspicuously diverse but developmental processes that generate such variation remain relatively obscure. To identify mechanisms that produce species-specific jaw muscle pattern we conducted transplant experiments using Japanese quail and White Pekin duck, which exhibit considerably different jaw morphologies in association with their particular modes of feeding. Previous work indicates that cranial muscle formation requires interactions with adjacent skeletal and muscular connective tissues, which arise from neural crest mesenchyme. We transplanted neural crest mesenchyme from quail to duck embryos, to test if quail donor-derived skeletal and muscular connective tissues could confer species-specific identity to duck host jaw muscles. Our results show that duck host jaw muscles acquire quail-like shape and attachment sites due to the presence of quail donor neural crest-derived skeletal and muscular connective tissues. Further, we find that these species-specific transformations are preceded by spatiotemporal changes in expression of genes within skeletal and muscular connective tissues including Sox9, Runx2, Scx, and Tcf4, but not by alterations to histogenic or molecular programs underlying muscle differentiation or specification. Thus, neural crest mesenchyme plays an essential role in generating species-specific jaw muscle pattern and in promoting structural and functional integration of the musculoskeletal system during evolution.  相似文献   

11.
Diencephalic, mesencephalic and metencephalic neural crest cells are skeletogenic and derive from neural folds that do not express Hox genes. In order to examine the influence of Hox gene expression on skull morphogenesis, expression of Hoxa2, Hoxa3 and Hoxb4 in conjunction with that of the green fluorescent protein has been selectively targeted to the Hox-negative neural folds of the avian embryo prior to the onset of crest cell emigration. Hoxa2 expression precludes the development of the entire facial skeleton. Transgenic Hoxa2 embryos such as those from which the Hox-negative domain of the cephalic neural crest has been removed have no upper or lower jaws and no frontonasal structures. Embryos subjected to the forced expression of Hoxa3 and Hoxb4 show severe defects in the facial skeleton but not a complete absence of facial cartilage. Hoxa3 prevents the formation of the skeleton derived from the first branchial arch, but allows the development (albeit reduced) of the nasal septum. Hoxb4, by contrast, hampers the formation of the nasal bud-derived skeleton, while allowing that of a proximal (but not distal) segment of the lower jaw. The combined effect of Hoxa3 and Hoxb4 prevents the formation of facial skeletal structures, comparable with Hoxa2. None of these genes impairs the formation of neural derivatives of the crest. These results suggest that over the course of evolution, the absence of Hox gene expression in the anterior part of the chordate embryo was crucial in the vertebrate phylum for the development of a face, jaws and brain case, and, hence, also for that of the forebrain.  相似文献   

12.
Two competing intuitions have dominated the debate over facial tissue transplantation. On one side are those who argue that relieving the suffering of those with severe facial disfigurement justifies the medical risks and possible loss of life associated with this experimental procedure. On the other are those who say that there is little evidence to show that such transplants would have longterm psychological benefits that couldn’t be achieved by other means and that without clear benefits, the risk is simply too great. Ethicists on both sides have called for more analysis of the link between the face and personal identity in order to get a better grasp on potential gains and losses. This paper responds to that call by looking at contemporary philosophical analyses of the relation between organ transplants and personal identity and between the human face, human dignity, and human vulnerability. It is argued that the face matters not because it is the unique marker of our identity, but because of its role in the intersubjective constitution of moral identity and human dignity.  相似文献   

13.
T F Gale  J A Horner 《Teratology》1987,36(3):379-387
The environmental contaminant cadmium (Cd) is a proven teratogenic agent in rodents. In hamsters, it causes craniofacial dysmorphogenesis. The underlying mechanism for this damage is unknown. Early facial development in hamsters occurs during gestation days 9-11 and involves the formation and appropriate fusion of several prominences surrounding the stomodeum. The hypothesis for this study is that the occurrence of Cd-induced facial defects involves a disruption of the normal formation and/or fusion of one or more of the facial prominences. Pregnant hamsters were treated with Cd (2 mg/kg) or water intravenously on gestation day 8 (8 A.M.). On gestation day 10 (8 A.M.) surviving embryos were processed to obtain scanning electron micrographs of the frontal view of the face. Measurements of the surface areas of 15 different portions of the face were obtained using a microcomputer equipped with a digitizer. Both qualitative and quantitative differences in the faces were detected upon comparing the Cd-exposed and control embryos. The surface areas of the prominences measured were significantly smaller in the Cd-exposed embryos. However the sizes of the other regions of the Cd-exposed faces were either little affected (nasal pit areas) or markedly increased (the interval of the face between the medial nasal prominences). Two possible explanations for these data are discussed.  相似文献   

14.
The shaping of the vertebrate head results from highly dynamic integrated processes involving the growth and exchange of signals between the ectoderm, the endoderm, the mesoderm and Cephalic Neural Crest Cells (CNCCs). During embryonic development, these tissues change their shape and relative position rapidly and come transiently in contact with each other. Molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the mesenchymes which will form the different skeletal and muscular components of the head. Slight spatio-temporal modifications of these signalling maps can result in profound changes in craniofacial development and might have contributed to the evolution of facial diversity. Abnormal signalling patterns could also be at the origin of congenital craniofacial malformations. This review brings into perspective recent work on spatial and temporal aspects of facial morphogenesis with particular focus on the molecular mechanisms of jaw specification.  相似文献   

15.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307-317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4delta), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87-97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   

16.
17.
Wnt signaling mediates regional specification in the vertebrate face   总被引:1,自引:0,他引:1  
At early stages of development, the faces of vertebrate embryos look remarkably similar, yet within a very short timeframe they adopt species-specific facial characteristics. What are the mechanisms underlying this regional specification of the vertebrate face? Using transgenic Wnt reporter embryos we found a highly conserved pattern of Wnt responsiveness in the developing mouse face that later corresponded to derivatives of the frontonasal and maxillary prominences. We explored the consequences of disrupting Wnt signaling, first using a genetic approach. Mice carrying compound null mutations in the nuclear mediators Lef1 and Tcf4 exhibited radically altered facial features that culminated in a hyperteloric appearance and a foreshortened midface. We also used a biochemical approach to perturb Wnt signaling and found that in utero delivery of a Wnt antagonist, Dkk1, produced similar midfacial malformations. We tested the hypothesis that Wnt signaling is an evolutionarily conserved mechanism controlling facial morphogenesis by determining the pattern of Wnt responsiveness in avian faces, and then by evaluating the consequences of Wnt inhibition in the chick face. Collectively, these data elucidate a new role for Wnt signaling in regional specification of the vertebrate face, and suggest possible mechanisms whereby species-specific facial features are generated.  相似文献   

18.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307–317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4δ), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87--97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   

19.
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.  相似文献   

20.
The human amygdala is critical for social cognition from faces, as borne out by impairments in recognizing facial emotion following amygdala lesions [1] and differential activation of the amygdala by faces [2-5]. Single-unit recordings in the primate amygdala have documented responses selective for faces, their identity, or emotional expression [6, 7], yet how the amygdala represents face information remains unknown. Does it encode specific features of faces that are particularly critical for recognizing emotions (such as the eyes), or does it encode the whole face, a level of representation that might be the proximal substrate for subsequent social cognition? We investigated this question by recording from over 200 single neurons in the amygdalae of seven neurosurgical patients with implanted depth electrodes [8]. We found that approximately half of all neurons responded to faces or parts of faces. Approximately 20% of all neurons responded selectively only to the whole face. Although responding most to whole faces, these neurons paradoxically responded more when only a small part of the face was shown compared to when almost the entire face was shown. We suggest that the human amygdala plays a predominant role in representing global information about faces, possibly achieved through inhibition between individual facial features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号