首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between ionizable groups on the same molecule modulate the binding of protons to an extent where the binding constants may be shifted by orders of magnitude. The first two papers of this series discussed the family of carboxylic acids, pairwise isotropic interactions, and evaluation of single site binding data. This paper presents an extended group of hypothetical binding isotherms. Procedures are illustrated for deriving interaction parameters from binding data. The interaction parameters for about 25 representative compounds with two and three interacting ionizable groups are evaluated and tabulated.  相似文献   

2.
Structure and function of macromolecules depend critically on the ionization states of their acidic and basic groups. Most current structure-based theoretical methods that predict pK of ionizable groups in macromolecules include, as one of the key steps, a computation of the partition sum (Boltzmann average) over all possible protonation microstates. As the number of these microstates depends exponentially on the number of ionizable groups present in the molecule, direct computation of the sum is not realistically feasible for many typical proteins that may have tens or even hundreds of ionizable groups. We have tested a simple and robust approximate algorithm for computing these partition sums for macromolecules. The method subdivides the interacting sites into independent clusters, based upon the strength of site-site electrostatic interaction. The resulting partition function is factorizable into computationally manageable components. Two variants of the approach are presented and validated on a representative test set of 602 proteins, by comparing the pK(1/2) values computed by the proposed method with those obtained by the standard Monte Carlo approach used as a reference. With 95% confidence, the relative error introduced by the more accurate of the two methods is less than 0.25 pK units. The algorithms are one to two orders of magnitude faster than the Monte Carlo method, with the typical settings. A graphical representation is introduced that visualizes the clusters of strong site-site interactions in the context of the three-dimensional (3D) structure of the macromolecule, facilitating identification of functionally important clusters of ionizable groups; the approach is exemplified on two proteins, bacteriorhodopsin and myoglobin.  相似文献   

3.
Evaluation of the parameters describing the binding of protons to clusters of interacting sites requires some reasonable assumptions and procedures because it is impossible to observe an unperturbed site in its interacting environment. When the unperturbed sites are not identical, individual site binding data allow for the evaluation of the differences (or ratios) between the unperturbed (or intrinsic) binding constants but not their actual values (or the interaction energies). In this paper we extend our previous treatment of the ionization of clusters in order to generalize pairwise isotropic interactions and take into account the present availability of individual site binding data.  相似文献   

4.
When azide ion reacts with methemoglobin in unbuffered solution the pH of the solution increases. This phenomenon is associated with increases in the pK values of heme-linked ionizable groups on the protein which give rise to an uptake of protons from solution. We have determined as a functional of pH the proton uptake, delta h+, on azide binding to methemoglobin at 20 degrees C. Data for methemoglobins A (human), guinea pig and pigeon are fitted to a theoretical expression based on the electrostatic effect of these sets of heme-linked ionizable groups on the binding of the ligand. From these fits the pK values of heme-linked ionizable groups are obtained for liganded and unliganded methemoglobins. In unliganded methemoglobin pK1, which is associated with carboxylic acid groups, ranges between 4.0 and 5.5 for the three methemoglobins; pK2, which is associated with histidines and terminal amino groups, ranges from 6.2 to 6.7. In liganded methemoglobin pK1 lies between 5.8 and 6.3 and pK2 varies from 8.1 to 8.5. The pH dependences of the apparent equilibrium constants for azide binding to the three methemoglobins at 20 degrees C are well accounted for with the pK values calculated from the variation of delta h+ with pH.  相似文献   

5.
We have examined the redistribution of acetylcholine receptor (AChR) intramembrane particles (IMPs) when AChR clusters of cultured rat myotubes are experimentally disrupted and allowed to reform. In control myotubes, the AChR IMPs are evenly distributed within the AChR domains of cluster membrane. Shortly after addition of azide to disrupt clusters, IMPs become unevenly scattered, with some microaggregation. After longer treatment, IMPs are depleted from AChR domains with no further change in IMP distribution. Contact domains of clusters are relatively poor in IMPs both before and after cluster dispersal. Upon visualization with fluorescent alpha-bungarotoxin, some AChR in azide-treated samples appear as small, bright spots. These spots do not correspond to microaggregates seen in freeze-fracture replicas, and probably represent receptors that have been internalized. The internalization rate is insufficient to account completely for the loss of IMPs from clusters, however. During reformation of AChR clusters upon removal of azide, IMP concentration in receptor domains increases. At early stages of reformation, IMPs appear in small groups containing compact microaggregates. At later times, AChR domains enlarge and IMPs within them assume the evenly spaced distribution characteristic of control clusters. These observations suggest that the disruption of clusters is accompanied by mobilization of AChR from a fixed array, allowing AChR IMPs to diffuse away from the clusters, to form microaggregates, and to become internalized. Cluster reformation appears to be the reverse of this process. Our results are thus consistent with a two-step model for AChR clustering, in which the concentration of IMPs into a small membrane region precedes their rearrangement into evenly spaced sites.  相似文献   

6.
The receptor, a maltose/maltooligosaccharide-binding protein, has been found to be an excellent system for the study of molecular recognition because its polar and nonpolar binding functions are segregated into two globular domains. The X-ray structures of the "closed" and "open" forms of the protein complexed with maltose and maltotetraitol have been determined. These sugars have approximately 3 times more accessible polar surface (from OH groups) than nonpolar surface (from small clusters of sugar ring CH bonds). In the closed structures, the oligosaccharides are buried in the groove between the two domains of the protein and bound by extensive hydrogen bonding interactions of the OH groups with the polar residues confined mostly in one domain and by nonpolar interactions of the CH clusters with four aromatic residues lodged in the other domain. Substantial contacts between the sugar hydroxyls and aromatic residues are also formed. In the open structures, the oligosaccharides are bound almost exclusively in the domain rich in aromatic residues. This finding, along with the analysis of buried surface area due to complex formations in the open and closed structures, supports a major role for nonpolar interactions in initial ligand binding even when the ligands have significantly greater potential for highly specific polar interactions.  相似文献   

7.
alpha-Lactalbumin (alpha-LA) undergoes a pH-dependent unfolding from the native state to a partially unfolded state (the molten globule state). To understand the role of electrostatic interactions in protein denaturation, NMR and CD pH titration experiments are performed on guinea pig alpha-LA. Variation of pH over the range of 7.0 to 2.0 simultaneously leads to the acid denaturation of the protein and the titration of individual ionizable groups. The pH titrations are interpreted in the context of these coupled events, and indicate that acid denaturation in alpha-LA is a cooperative event that is triggered by the protonation of two ionizable residues. Our NMR results suggest that the critical electrostatic interactions that contribute to the denaturation of alpha-LA are concentrated in the calcium binding region of the protein.  相似文献   

8.
Although ionizable groups are known to play important roles in the assembly, catalytic, and regulatory mechanisms of Escherichia coli aspartate transcarbamylase, these groups have not been characterized in detail. We report the application of static accessibility modified Tanford-Kirkwood theory to model electrostatic effects associated with the assembly of pairs of chains, subunits, and the holoenzyme. All of the interchain interfaces except R1-R6 are stabilized by electrostatic interactions by -2 to -4 kcal-m-1 at pH 8. The pH dependence of the electrostatic component of the free energy of stabilization of intrasubunit contacts (C1-C2 and R1-R6) is qualitatively different from that of intersubunit contacts (C1-C4, C1-R1, and C1-R4). This difference may allow the transmission of information across subunit interfaces to be selectively regulated. Groups whose calculated pK or charge changes as a result of protein-protein interactions have been identified and the results correlated with available information about their function. Both the 240s loop of the c chain and the region near the Zn(II) ion of the r chain contain clusters of ionizable groups whose calculated pK values change by relatively large amounts upon assembly. These pK changes in turn extend to regions of the protein remote from the interface. The possibility that networks of ionizable groups are involved in transmitting information between binding sites is suggested.  相似文献   

9.
The relative force-pCa relation of skinned frog skeletal muscle fibers is shifted along the pCa axis by changes in pH. This shift has been interpreted as arising from competition between H+ and Ca2+ for a binding site on troponin. Unfortunately, binding studies have been unable to confirm such competition. Alternatively, however, the data fit a model where H+ influences the degree of dissociation of ionizable groups on the surface of the thin filaments, thus altering the electrostatic potential surrounding the filaments. Alterations in the potential will, in turn, change the concentration of Ca2+ near the troponin binding sites in accordance with the Boltzmann relation. A simple model, based upon the Gouy-Chapman relation between surface potential and charge density, provides a quantitative explanation for the shift of the relative force-pCa curve with pH, given a reasonable estimate of the surface charge density on the thin filament. A best fit is obtained when the ionizable groups giving rise to the potential have a log proton ionization constant (pKa) of 6.1, similar to that for the imidazole group on histidine, and when the density of these groups is near that estimated from amino acid analysis of thin filament proteins and from filament geometry. In preliminary experiments, reaction of skinned frog fibers with diethylpyrocarbonate (DEP) at pH 6 shifted the force-pCa curve toward lower Ca2+. This would be expected in the model since DEP at pH 6 is reported to specifically react with histidine imidazole groups and to irreversibly decrease their pKa, which would increase the net negative charge of the filaments.  相似文献   

10.
A review of the hydrogen bonded network on the protein surface shows the presence of a charged complex system with parallel and competitive interactions, including ionizable side-chains, migrating protons, bound water and nearby backbone peptides. This system displays cooperative effects of dynamical nature, reviewed for lysozyme as a case. By increasing the water coverage of the protein powder, the bound water cluster exhibits a percolative transition, detectable by the onset of large water-assisted displacements of migrating protons, with a parallel emergence of protein mobility and biological function. By lowering the temperature, migrating protons exhibit a glassy dielectric relaxation in the low frequency range, pointing to a frustration by competing interactions similar to that observed in spin glasses and fragile glass forming liquids. The observation of these dissipative processes implies the occurrence of spontaneous charge fluctuations. A simplified model of the protein surface, where conformational and ionizable side-chain fluctuations are averaged out, is used to discuss the statistical physics of these cooperative effects. Some biological implications of this dynamical cooperativity for enzymatic activity are briefly suggested at the end.  相似文献   

11.
Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.  相似文献   

12.
The amidase activity of human alpha-thrombin has been studied in the pH range 5.5 to 10, and at four different chloride concentrations from 5 mM to 1 M. The Michaelis-Menten constant, Km, shows a bell-shaped dependence over the pH range studied, with a minimum around pH 8. The pH dependence of the catalytic constant, kcat, shows multiple inflection points especially at low (less than 0.1 M) chloride concentrations, thereby implicating the existence of multiple catalytic forms of the enzyme. A general linkage scheme is proposed for the analysis of the effect of protons on thrombin amidase activity, and experimental data have globally been analysed over the entire pH range in terms of such a scheme. Four proton-linked ionizable groups seem to be involved in the control of thrombin amidase activity. Two of these groups change their pK value upon substrate binding to the enzyme and account for the pH dependence of Km. All four groups control the catalytic activity of the enzyme which decreases with increasing protonation. Chloride has little effect on Km, while kcat changes significantly at pH less than 8. This effect is due to an increased enzymatic activity of the highly protonated intermediates at high chloride concentrations, as well as to the pK shift of two proton-linked ionizable groups.  相似文献   

13.
C W Garner  F J Behal 《Biochemistry》1975,14(23):5084-5088
The presence of at least two ionizable active center groups has been detected by a study of the effect of pH upon catalysis of hydrolysis of L-alanyl-beta-naphthylamide by human liver alanine aminopeptidase and upon the inhibition of hydrolysis by inhibitors and substrate analogs. Octanoic acid, octylamine, and peptide inhibitors have been found to be competitive inhibitors and are therefore thought to bind the active center. L-Phe was previously shown to bind the active center since it was found to be a competitive inhibitor of the hydrolysis of tripeptide substrates (Garner, C. W., and Behal, F. J. (1975), Biochemistry 14, 3208). A plot of pKm vs. pH for the substrate L-Ala-beta-naphthylamide showed that binding decreased below pH 5.9 and above 7.5, the points at which the theoretical curve undergoes an integral change in slope. These points are interpreted as the pKa either of substrate ionizable groups or binding-dependent enzyme active center groups. Similar plots of pKm vs. pH for L-alanyl-p-nitroanilide (as substrate) and pKi vs. pH for L-Leu-L-Leu-L-Leu and D-Leu-L-Tyr (as inhibitors) gave pairs fo pKa values of 5.8 and 7.4, 6.0 and 7.5, and 5.7 and 7.5, respectively. All the above substrates (and D-Leu-L-Tyr) have pKa values near 7.5; therefore, the binding-dependent group with a pKa value near 7.5 is possibly this substrate group. Similar plots of pKi vs. pH for the inhibitors L-Phe, L-Met, L-Leu, octylamine, and octanoic acid had only one bending point at 7.7, 7.6, 7.4, 6.3, and 5.9, respectively. Amino acid inhibitors, octylamine, and octanoic acid have no groups with pKa values between 5 and 9. These data indicate that there are two active center ionizable groups with pKa values of approximately 6.0 and 7.5 which are involved in substrate binding or inhibitory amino acid binding but not in catalysis since Vmax was constant at all pH values tested.  相似文献   

14.
Clusters of charged residues are one of the key features of protein primary structure since they have been associated to important functions of proteins. Here, we present a proteome wide scan for the occurrence of Charge Clusters in Protein sequences using a new search tool (FCCP) based on a score‐based methodology. The FCCP was run to search charge clusters in seven eukaryotic proteomes: Arabidopsis thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Homo sapiens, Mus musculus, and Saccharomyces cerevisiae. We found that negative charge clusters (NCCs) are three to four times more frequent than positive charge clusters (PCCs). The Drosophila proteome is on average the most charged, whereas the human proteome is the least charged. Only 3 to 8% of the studied protein sequences have negative charge clusters, while 1.6 to 3% having PCCs and only 0.07 to 0.6% have both types of clusters. NCCs are localized predominantly in the N‐terminal and C‐terminal domains, while PCCs tend to be localized within the functional domains of the protein sequences. Furthermore, the gene ontology classification revealed that the protein sequences with negative and PCCs are mainly binding proteins. Proteins 2015; 83:1252–1261. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
16.
A method is described to objectively identify hydrophobic clusters in proteins of known structure. Clusters are found by examining a protein for compact groupings of side chains. Compact clusters contain seven or more residues, have an average of 65% hydrophobic residues, and usually occur in protein interiors. Although smaller clusters contain only side-chain moieties, larger clusters enclose significant portions of the peptide backbone in regular secondary structure. These clusters agree well with hydrophobic regions assigned by more intuitive methods and many larger clusters correlate with protein domains. These results are in striking contrast with the clustering algorithm of J. Heringa and P. Argos (1991, J Mol Biol 220:151-171). That method finds that clusters located on a protein's surface are not especially hydrophobic and average only 3-4 residues in size. Hydrophobic clusters can be correlated with experimental evidence on early folding intermediates. This correlation is optimized when clusters with less than nine hydrophobic residues are removed from the data set. This suggests that hydrophobic clusters are important in the folding process only if they have enough hydrophobic residues.  相似文献   

17.
Antigen recognition triggers the recruitment of the critical adaptor protein SLP-76 to small macromolecular clusters nucleated by the T-cell receptor (TCR). These structures develop rapidly, in parallel with TCR-induced increases in tyrosine phosphorylation and cytosolic calcium, and are likely to contribute to TCR-proximal signaling. Previously, we demonstrated that these SLP-76-containing clusters segregate from the TCR and move towards the center of the contact interface. Neither the function of these clusters nor the structural requirements governing their persistence have been examined extensively. Here we demonstrate that defects in cluster assembly and persistence are associated with defects in T-cell activation in the absence of Lck, ZAP-70, or LAT. Clusters persist normally in the absence of phospholipase C-gamma1, indicating that in the absence of a critical effector, these structures are insufficient to drive T-cell activation. Furthermore, we show that the critical adaptors LAT and Gads localize with SLP-76 in persistent clusters. Mutational analyses of LAT, Gads, and SLP-76 indicated that multiple domains within each of these proteins contribute to cluster persistence. These data indicate that multivalent cooperative interactions stabilize these persistent signaling clusters, which may correspond to the functional complexes predicted by kinetic proofreading models of T-cell activation.  相似文献   

18.
Uropathogenic Escherichia coli frequently express globoside-specific adhesins, shown to mediate binding to uroepithelial cells. For one gene cluster pap, it recently has been demonstrated that globoside binding is not dependent on expression of the pilus subunit gene papA. Instead, two other pap genes papF and papG are specifically required for globoside binding (F. P. Lindberg et al., EMBO J. 3:1167-1173, 1984). By restriction enzyme mapping, DNA hybridization, DNA sequencing, and protein expression in minicells, we show that three gene clusters encoding globoside binding have a very similar structure and gene organization, although they were cloned from different E. coli isolates. Major differences between the adhesin clones were restricted to the central part of the pilin gene (papA) and to one of the two adhesin gene (papG). The three functional units required for biogenesis of globoside-binding pili, i.e., pilin synthesis, pilin export, and pilin assembly, as well as expression of adhesion function, were all trans complementable among the gene clusters.  相似文献   

19.
After isolated chloroplast thylakoids have been transferred to a medium which is more alkaline than their storage medium, they retain considerable amounts of unequilibrated protons for often longer than 10 min. Essentially all of these protons are released upon uncoupler addition when the thylakoids are osmotically swollen, but only a portion of them when they are in a shrunken state. Osmotic swelling also greatly accelerates the inactivation of the water-oxidizing system enzyme of Photosystem II, and its depletion of functional Cl?, at alkaline pH. Analyses of the mestable proton gradient in terms of stoichiometry, temperature dependence, and effect on fluorescent amine probes, suggest that most of the protons involved are bound and exchange readily with the bulk phases only when the thylakoids are swollen. It is concluded that, in shrunken thylakoids, the water-oxidizing enzymes are buried in special H+-sequestering domains which probably are formed by cavities in the inner surface of the thylakoid membrane. An observed cooperative action of alkaline pH and divalent cations during Cl?-extraction from Photosystem II is interpreted as revealing an involvement of both a negatively charged surface region and positively charged groups in maintaining the functional integrity of the site of water oxidization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号