首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The present study was undertaken to separate peroxisomes of the dog kidney cortex by the methods of discontinuous sucrose density gradient and zonal centrifugation. The separation of subcellular particles was evaluated by measuring the activities of reference enzymes, beta-glycerophosphatase for lysosomes, succinate dehydrogenase for mitochondria, glucose-6-phosphatase for microsomes, and catalase and D-amino acid oxidase for peroxisomes. The activities of D-amino acid oxidase and catalase were mainly observed in fractions 1 and 2 (1.6 and 1.7 M sucrose) obtained by discontinuous sucrose density-gradient centrifugation. Small amounts of acid phosphatase and succinate dehydrogenase contaminated these fractions. Considerably higher activity of catalase was determined in the supernatant, while D-amino acid oxidase showed a lower activity. By the method of zonal centrifugation, the highest specific activities of catalase and D-amino acid oxidase were found in fraction 50 (1.73 M sucrose) with no succinate dehydrogenase, acid phosphatase or glucose-6-phosphatase activity. These results suggested that peroxisomes of dog kidney cortex were clearly separated in 1.73 M sucrose from mitochondria, lysosomes and microsomes by zonal centrifugation.  相似文献   

3.
M Tanaka  H Iwao  F Ikemoto  K Yamamoto 《Life sciences》1985,36(12):1217-1224
Renal cortical high-molecular-weight renin (Mw:60,000) of the dog is a complex of renin (low-molecular-weight renin; Mw:40,000) and a renin binding protein. We detected an enzyme-like substance that catalyzes the conversion from high- into low-molecular-weight renin. When the renal cortical extract was added to the high-molecular-weight renin and the preparation incubated at 37 degrees C for 30 min, the high-molecular-weight renin was converted into the low-molecular-weight form. No such conversion occurred in the case of renal medullary extract. This converting substance was fractionated using concanavalin A Sepharose, 70% ammonium sulfate saturation and DEAE-cellulose chromatography. The converting activity was inhibited by potassium tetrathionate, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid). These events suggest that this substance is an enzyme possessing sulfhydryl moieties. However, a cathepsin B inhibitor leupeptin did not affect the activity. Accordingly, the high-molecular-weight renin converting enzyme, which is sensitive to sulfhydryl oxidation, may explain the mechanism of interconversion between high- and low-molecular-weight renin involving the oxidation-reduction of tissue sulfhydryl groups.  相似文献   

4.
5.
Luminal (brush border) and antiluminal (basal-lateral) membranes were isolated from canine renal cortex. The enzyme marker for luminal membrane, alkaline phosphatase was enhanced 19-fold and the antiluminal enzyme marker, (Na+ + K+)-ATPase, was enhanced 22-fold in their respective membrane preparation, while the amount of cross contamination was minimal. Contamination of these preparations by enzyme markers for lysosomes, endoplasmic reticulum and mitochondria was also low. Routinely, more than 50 mg membrane protein was isolated for each membrane. Electron micrographs showed that the membranes were uniform in size, appearance, and vesicular in nature. An examination of the orientation of these membranes showed that 76.5% of the antiluminal membranes and 86% of the luminal membranes were right-side out.  相似文献   

6.
Luminal (brush border) and antiluminal (basal-lateral) membranes were isolated from canine renal cortex. The enzyme marker for luminal membrane, alkaline phosphatase was enhanced 19-fold and the antiluminal enzyme marker, (Na+ + K+)-ATPase, was enhanced 22-fold in their respective membrane preparation, while the amount of cross contamination was minimal. Contamination of these preparations by enzyme markers for lysosomes, endoplasmic reticulum and mitochondria was also low. Routinely, more than 50 mg membrane protein was isolated for each membrane. Electron micrographs showed that the membranes were uniform in size, appearance, and vesicular in nature. An examination of the orientation of these membranes showed that 76.5% of the antiluminal membranes and 86% of the luminal membranes were right-side out.  相似文献   

7.
The present study was undertaken to isolate and investigate some physicochemical properties of renin granules from the rat kidney cortex. Two preparations of subcellular organelles were used: a primary-granule fraction, which allowed the properties of lysosomes to be compared simultaneously with those of renin granules, and a semi-purified preparation of the latter. The specific activity of renin in the primary-granule preparations was about 4-fold higher than in the original homogenate; that of the semi-purified renin-granule preparation was about 18-fold higher than in the homogenate, and consisted mainly of electron-dense granules but some mitochondria were also observed. Renin and acid phosphatase release from the primary-granule preparation was increased by lowering osmolality, by a low-molecular-weight solute (glucose) and by Triton X-100 or digitonin. Enzyme release was decreased by lowering the incubation temperature (4 degrees C) or the presence of CaCl2. Renin release from the partially purified granule preparation was not affected by cyclic AMP, cyclic GMP and ATP.  相似文献   

8.
Crude renin granule preparations isolated from the rat renal cortex were further purified in isotonic conditions (300 mOsm/kg) using various density gradient materials. It was not possible to separate renin granules from other subcellular organelles using dextran, 40,000-sucrose or metrizamide-sucrose gradients at about 300 mOsm/kg. When osmolality of dextran-sucrose gradients was increased, some separation was found but both renin granules and mitochondria gained density. During a short centrifugation (4640 X g, 30 min) renin granules remained intact and appeared in two populations in Percoll-sucrose gradients. The apparently heavier (larger) particles (at 1.12-1.13 kg/l) were greatly purified from mitochondria (80 X purification vs. the whole homogenate), protein (120 X) and lysosomes (24 X). Electron micrographs demonstrated many dense core granules. The fraction containing apparently lighter (small) granules (at 1.08-1.09 kg/l) was heavily contaminated with mitochondria and lysosomes. During longer centrifugation (4640 X g, 60 min), only one major peak showing renin activity was observed at 1.12-1.13 kg/l, and other cell organelles were lighter. Hence the two renin populations evidently do not differ in density but rather in size. In the animals kept on a low-sodium diet, both types of renin granules were increased.  相似文献   

9.
10.
11.
The effect of cationic drugs on the uptake of the prototypical organic cation N'-methylnicotinamide has been evaluated. Using purified brush border membrane vesicles prepared from dog kidney cortex and applying a rapid Millipore filtration technique, cationic drugs apparent inhibitory constants (Ki) were calculated from kinetic analysis of N'-methylnicotinamide uptake corrected for noncarrier-mediated transport (10 s uptake; outwardly directed H+ gradient; pH 7.4, 25 degrees C). All of the cationic drugs tested exhibited competitive inhibition of N'-methylnicotinamide uptake suggesting that they all share the organic base transport system at the renal proximal tubule. The Ki values were as follows, in order of decreasing apparent affinity: quinidine (0.7 microM), trimehoprim (1.3 microM), cimetidine (2.0 microM), famotidine (3.0 microM), quinine (7.0 microM), amiloride (5.8 microM), procainamide (21 microM), and nizatidine (30 microM). The different relative affinities of the drugs for the organic base transport system may explain the mutual competition for renal tubular secretion observed when cationic drugs are administered concurrently in vivo, e.g., trimethoprim--procainamide and cimetidine--procainamide. The approach outlined in the present study should prove useful to predict complex drug interactions in clinical pharmacology.  相似文献   

12.
Glucosamine-6-phosphate deaminase (EC 5.3.1.10) from dog kidney cortex was purified to homogeneity, as judged by several criteria of purity. The purification procedure was based on two biospecific affinity chromatography steps, one of them using N-epsilon-amino-n-hexanoyl-D-glucosamine-6-phosphate agarose, an immobilized analog of the allosteric ligand, and the other by binding the enzyme to phosphocellulose followed by substrate elution, which behaved as an active-site affinity chromatography. The enzyme is an hexameric protein of about 180 kDa composed of subunits of 30.4 kDa; its isoelectric point was 5.7. The sedimentation coefficient was 8.3S, and its frictional ratio was 1.28, indicating that dog deaminase is a globular protein. The enzyme displays positive homotropic cooperativity toward D-glucosamine-6-phosphate (Hill coefficient = 2.1, pH 8.8). Cooperativity was completely abolished by saturating concentrations of GlcNAc6P; this allosteric modulator activated the reaction with a typical K-effect. Under hyperbolic kinetics, a Km value of 0.25 +/- 0.02 mM for D-glucosamine-6-phosphate was obtained. Assuming six catalytic sites per molecule, kcat is 42 s-1. Substrate-velocity data were fitted to the Monod's allosteric model for the exclusive-binding case for both substrate and activator, with two interacting substrate sites. The Kdis for N-acetyl-D-glucosamine-6-phosphate was estimated at 14 microM.  相似文献   

13.
14.
15.
The unactivated molybdate-stabilized glucocorticoid receptor (GcR) was purified from rat kidney cortex cytosol (RKcC) by using a modification of the procedure previously described by this laboratory for rat hepatic receptor. The purification includes affinity chromatography, gel filtration, and ion-exchange chromatography. The final preparation (approximately 1000-fold pure as determined from specific radioactivity) was used in subsequent physicochemical and functional analyses. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a single heavily Coomassie-stained band at 90 kilodaltons. Density gradient ultracentrifugation indicated a sedimentation coefficient of 10.5 +/- 0.05 S (n = 2). Chromatography on an analytical gel filtration column produced a Stokes radius (Rs) of 6.4 +/- 0.07 nm (n = 5). The Rs was unchanged when the molybdate-stabilized GcR was analyzed in the presence of 400 mM KCl or when analyzed in the unpurified (cytosolic) state. In contrast, the hepatic GcR was observed to exist as a larger form in cytosol (7.7 +/- 0.2 nm). Following purification, or upon gel filtration analysis under hypertonic conditions, the Rs was similar to that of the unpurified RKcC GcR. Following removal of molybdate from RKcC GcR and thermal activation (25 degrees C/30 min), DNA-cellulose binding increased 1.5-2-fold over the unheated control. Addition of RKcC or hepatic cytosol (endogenous receptors thermally denatured at 90 degrees C/30 min or presaturated with 10(-7) M radioinert ligand) during thermal activation increased DNA-cellulose binding an additional 2-6-fold beyond the heated control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
Two forms of renin, one of mol.wt. 43,000 and the other 60,000, were found in the dog kidney. Conversion between the two forms of renin was reversible at neutral pH. Though the molecular weight of renin in kidney-cortex homogenate was 43,000, it was completely converted into high-molecular-weight renin in the presence of substances that react with thiol groups. On the contrary, stored renin in the granules was the form of normal size (mol. wt. 43,000) regardless of the absence or presence of such substances. The present experiments indicated that renin is stored in the granules as the form of normal size and might be converted into high-molecular-weight renin when it is released from the granules and attached to some substance in the soluble fraction of renal-cortical tissue.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号