首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The promoter of the mouse inducible nitric oxide synthase (iNOS) has a putative octamer motif (ATGCAAAA) which exists 24 bp upstream from the TATA box and is mismatched at a single residue from the consensus octamer motif. To examine whether this site is involved in iNOS expression, we constructed various deletions and site-directed mutants of the iNOS promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene, transfected the constructs into RAW 264.7 macrophages, and stimulated the cells with interferon-gamma (IFN-gamma) and/or lipopolysaccharide (LPS). CAT activity was not induced by LPS in constructs containing only the octamer motif (-71 to +82), but was induced with constructs containing the octamer motif and the upstream sequences of the NF-kappaB site (-91 to +82). However, a site-directed mutation of the octamer motif in the context of the -91 to +82 promoter construct or an extended promoter construct (-1542 to +82) abolished IFN-gamma and/or LPS-induced CAT activity. Similar results were obtained from site-directed mutants at either the NF-kappaB site or both the NF-kappaB site and octamer motif in these two constructs. In addition, we demonstrated that the conversion of the iNOS octamer motif into a consensus sequence increased CAT activity. Electrophoretic mobility shift assay (EMSA) performed with the NF-kappaB site or the octamer motif-containing oligonucleotide probe revealed that NF-kappaB binding was induced by LPS treatment, while the Oct-1 binding was constitutive. Competition assays performed with octamer-related oligonucleotide competitors derived from the immunoglobulin-kappaB or SV40 promoter confirmed the identity of the iNOS promoter sequence as being a Oct-1 binding site. EMSA carried out using a probe containing both the NF-kappaB site and the octamer motif identified two LPS-induced complexes. Competition assays with each NF-kappaB site or octamer motif competitor revealed that NF-kappaB and Oct-1 were present in these two complexes. These data suggest that, besides the NF-kappaB site, the octamer motif is essential for the maximal expression of the iNOS gene in murine macrophages, and the direct interaction of Oct-1 and NF-kappaB is important for the regulation of this gene.  相似文献   

4.
5.
6.
7.
The molecular details of 1-->3-beta-glucans, a fungal cell wall component, induced inflammatory responses are not well understood. In the present study, we conducted a systematic analysis of the molecular events leading to tumor necrosis factor (TNF)-alpha production after glucan stimulation of macrophages. We demonstrated that activation of nuclear factor kappaB (NF-kappaB) is essential in zymosan A (a source of 1-->3-beta-glucans)-induced TNF-alpha production in macrophages (RAW264.7 cells). Zymosan A-induced TNF-alpha protein production was associated with an increase in the TNF-alpha gene promoter activity. Activation of the TNF-alpha gene promoter was dependent on activation of NF-kappaB. Time course studies indicated that DNA binding activity of NF-kappaB preceded TNF-alpha promoter activity. Inhibition of NF-kappaB activation led to a dramatic reduction in both TNF-alpha promoter activity and TNF-alpha protein production in the response to zymosan A. Mutation of a major NF-kappaB binding site (kappa3) in the gene promoter resulted in a significant decrease in the induction of the gene promoter by zymosan A, while mutation of Egr or CRE sites failed to inhibit the response to zymosan. Together, these results strongly suggest that NF-kappaB is involved in signal transduction of 1-->3-beta-glucans-induced TNF-alpha expression.  相似文献   

8.
9.
10.
11.
12.
13.
C/EBPbeta plays a pivotal role in activation of human immunodeficiency virus type 1 (HIV-1) in monocytes/macrophages. However, mechanisms for functional regulation of C/EBPbeta remain uncharacterized. Previous studies indicated that NF-kappaB activation by tumor necrosis factor (TNF) receptor family, which activates TNF receptor associated factor (TRAF), induces HIV-1 expression. We found that TRAF signals activate HIV-1 LTR with mutations of NF-kappaB sites in promonocytic cell line U937, suggesting existence of an alternative HIV-1 activating pathway. In this study, we have characterized the signal transduction pathway of TRAF other than that leading to NF-kappaB, using U937 cell line, and its subline, U1, which is chronically infected by HIV-1. We show that signals downstream of TRAF2 and TRAF5 activate p38 MAPK, which directly phosphorylates C/EBPbeta, and that activation of p38 MAPK potently activates C/EBPbeta-mediated induction of HIV-1 gene expression. We also show TRAF2 and TRAF5 are expressed in monocytes/macrophages of spleen samples from HIV-1 infected patients. Identification of TRAF-p38 MAPK-CEBPbeta pathway provides a new target for controlling reactivation of latent HIV-1 in monocytes/macrophages.  相似文献   

14.
15.
Human immunodeficiency virus (HIV)-1 Tat released from HIV-1-infected monocytes is believed to enter other cells via an integrin-facilitated pathway, resulting in altered gene expression. Indeed, exogenous Tat protein can increase cell adhesion molecule gene expression in human endothelial cells. Signaling pathways initiated by Tat in endothelial cells are not known. We evaluated the ability of endogenous tat to stimulate monocyte adhesion via activation of nuclear factor-kappaB (NF-kappaB) within human umbilical vein endothelial cells. Transfection with pcTat, but not control vector DNA, increased NF-kappaB binding activity, NF-kappaB luciferase reporter activity, and monocyte adhesion. pcTat also increased kappaB-dependent HIV-1-LTR-CAT reporter activity 28-fold compared with a 3-fold increase produced by transfection with an equivalent amount of pcTax (from human leukemia virus). The pcTat-induced increase in pNF-kappaB-Luc activity and monocyte adhesion to endothelial cells was blocked by cotransfection with dominant-negative mutant IkappaBalpha and by incubation with 10 mM aspirin. We conclude that monocyte adhesion to human endothelial cells stimulated by pcTat is mediated via an NF-kappaB-dependent mechanism. Furthermore, inhibition studies using aspirin suggest that pcTat-stimulated NF-kappaB activation and monocyte adhesion occur via a redox-sensitive mechanism.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号