首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hY RNAs are a group of four small cytoplasmic RNAs of unknown function that are stably associated with at least two proteins, Ro60 and La, to form Ro ribonucleoprotein complexes. Here we show that the heterogeneous nuclear ribonucleoproteins (hnRNP) I and K are able to associate with a subset of hY RNAs in vitro and demonstrate these interactions to occur also in vivo in a yeast three-hybrid system. Experiments performed in vitro and in vivo with deletion mutants of hY1 RNA revealed its pyrimidine-rich central loop to be involved in interactions with both hnRNP I and K and clearly showed their binding sites to be different from the Ro60 binding site. Both hY1 and hY3 RNAs coprecipitated with hnRNP I in immunoprecipitation experiments performed with HeLa S100 extracts and cell extracts from COS-1 cells transiently transfected with VSV-G-tagged hnRNP-I, respectively. Furthermore, both anti-Ro60 and anti-La antibodies coprecipitated hnRNP I, whereas coprecipitation of hnRNP K was not observed. Taken together, these data strongly suggest that hnRNP I is a stable component of a subpopulation of Ro RNPs, whereas hnRNP K may be transiently bound or interact only with (rare) Y RNAs that are devoid of Ro60 and La. Given that functions related to translation regulation have been assigned to both proteins and also to La, our findings may provide novel clues toward understanding the role of Y RNAs and their respective RNP complexes.  相似文献   

2.

Background

Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication.

Methodology/Principal Findings

We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro.

Conclusions/Significance

We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.  相似文献   

3.
We describe an adaptation of the yeast three-hybrid system that allows the reconstitution in vivo of tripartite (protein-RNA-protein) ribonucleoproteins (RNPs). To build and try this system that we called RNP interaction trap assay (RITA), we used as a model the autoantigenic Ro RNPs. hY RNAs bear distinct binding sites for Ro60 and La proteins, and Ro RNPs are thus physiologically tripartite (Ro60/hY RNA/La). Using recombinant La (rLa) and Ro60 (rRo60) proteins and recombinant hY RNAs (rhY) co-expressed in yeast, we found that RNPs made of rRo60/rhY/rLa were readily reassembled. Reconstitution of tripartite RNPs was critically dependent on the presence of an appropriate Ro60 binding site on the recombinant RNA. The RITA assay was further used to detect (rRo60/rhY RNP)-binding proteins from a HeLa cell cDNA library, allowing specific identification of La and of a novel Ro RNP-binding protein (RoBPI) in more than 70% of positive clones. RITA assay may complement already available two- and three-hybrid systems to characterize RNP-binding proteins by allowing the in vivo identification of interactions strictly dependent upon the simultaneous presence of a protein and of its cognate RNA.  相似文献   

4.
Human Ro ribonucleoproteins (RNPs) are composed of one of the four small Y RNAs and at least two proteins, Ro60 and La; association of additional proteins including the Ro52 protein and calreticulin has been suggested, but clear-cut evidence is still lacking. Partial purification of Ro RNPs from HeLa S100 extracts allowed characterization of several subpopulations of Ro RNPs with estimated molecular masses of between 150 and 550 kDa. The majority of these complexes contained Ro60 and La, whereas only a small proportion of Ro52 appeared to be associated with Ro RNPs. To identify novel Y RNA-associated proteins in vitro, binding of cytoplasmic proteins to biotinylated Y RNAs was investigated. In these reconstitution experiments, several proteins with estimated molecular masses of 80, 68, 65, 62, 60 and 53 kDa, the latter two being immunologically distinct from Ro60 and Ro52, respectively, appeared to bind specifically to Y RNAs. Furthermore, autoantibodies to these proteins were found in sera from patients with systemic lupus erythematosus. The proteins bound preferentially to Y1 and Y3 RNA but, with the exception of the 53-kDa protein, only weakly to Y4 RNA and not at all to Y5 RNA. Coprecipitation of the 80, 68, 65, and 53-kDa proteins by antibodies to Ro60 and La was observed, suggesting that at least a proportion of the novel proteins may reside on the same particles as La and/or Ro60. Finally, the binding sites for these proteins on Y1 RNA were clearly distinct from the Ro60-binding site involving a portion of the large central loop 2, which was found to be indispensable for binding of the 80, 68, 65 and 53-kDa proteins, as well as the stem 3-loop 3 and stem 2-loop 1 regions. Interestingly, truncation of the La-binding site resulted in decreased binding of the novel proteins (but not of Ro60), indicating La to be required for efficient association. Taken together, these results suggest the existence of further subpopulations of Ro RNPs or Y RNPs, consistent with the heterogeneous characteristics observed for these particles in the biochemical fractionation experiments.  相似文献   

5.
The human Y RNAs, small RNAs with an unknown function, are complexed with at least three proteins: the 60,000 M(r) Ro protein (Ro60), the 52,000 M(r) Ro protein (Ro52) and the La protein (La). In this study we examined the intermolecular interactions between the components of these so-called Ro ribonucleoprotein (Ro RNP) complexes. Incubation of 32P-labelled hY1 RNA in HeLa S100 extract allows the reconstitution of Ro RNP complexes, which were analysed by immunoprecipitation with monospecific antisera. By immunodepletion of HeLa S100 extracts for either Ro60, Ro52 or La, followed by supplementation with recombinant Ro60 or La, it was demonstrated that both Ro60 and La bind to hY1 RNA directly without being influenced by one of the other proteins. However, binding of Ro52 to hY1 RNA required the presence of Ro60, which strongly suggests that the association of Ro52 with Ro RNPs is mediated by protein-protein interactions between Ro60 and Ro52.  相似文献   

6.
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.  相似文献   

7.
Ro RNPs are evolutionarily conserved ribonucleoprotein particles that consist of a small RNA, known as Y RNA, associated with several proteins, such as La, Ro60, and Ro52. The Y RNAs (Y1-Y5), which are transcribed by RNA polymerase III, have been shown to reside almost exclusively in the cytoplasm as Ro RNPs. To obtain more insight into the nuclear export pathway of Y RNAs, hY1 RNA export was studied in Xenopus laevis oocytes. Injection of various hY1 RNA mutants showed that an intact Ro60 binding site is a prerequisite for nuclear export, whereas the presence of an intact La binding site resulted in strong nuclear retention of hY1 RNA. Competition studies with various classes of RNAs indicated that, in addition to Ro60, another titratable factor was necessary for nuclear export of hY1 RNA. This factor appears also to be involved in nuclear export of tRNA. Because export of hY1 RNA could not be blocked by a synthetic peptide containing the recently identified nuclear export signal of the HIV-1 Rev protein, nuclear export of hY1 RNA does not seem to be dependent on a Rev-like nuclear export signal.  相似文献   

8.
Human Ro ribonucleoproteins (RNPs) are autoantigenic particles of unknown function(s) that consist of a 60-kDa protein (Ro60) associated with one hY RNA (hY1-5). Using a modified yeast three-hybrid system, named RNP interaction trap assay (RITA), we cloned a novel Ro RNP-binding protein (RoBPI), based on its property to interact in vivo in yeast with an RNP complex made of recombinant Ro60 (rRo60) protein and hY5 (rhY5) RNA. RoBPI cDNA contains three conserved RNA recognition motifs (RRM) and is present as a family of isoforms differing slightly at their 5' end. The 2.0-kb RoBPI mRNA was detected in all human tissues tested. Highly homologous cDNA sequences were found in banks of expressed sequence tags (ESTs) from mice. Two-hybrid, three-hybrid, and RITA experiments respectively established that 60 kDa RoBPI did not interact in yeast with rRo60 alone, with rhY5 RNA alone, or with bait RNPs consisting of rRo60 and recombinant hY1, hY3, or hY4 RNAs. RoBPI coimmunoprecipitated with Ro RNPs from HeLa cell extracts and partially colocalized with Ro60 in nuclei of cultured cells. Because hY5 RNA and RohY5 RNPs are recent evolutionary additions seen only in primates, but RoBPI seems more conserved, their interaction may represent a gain of function for Ro RNPs. Alternatively, interaction of RohY5 RNPs with RoBPI may have no functional bearing, but may underlie some of the unique biochemical and immunological properties of these RNPs.  相似文献   

9.
The interactions between Ro and La proteins and hY RNAs have been analysed. The binding site for the 60 kDa Ro protein on hY RNAs is shown to be the terminal part of the base paired stem structure, which contains the most highly conserved sequence among hY RNAs. The bulged C-residue within this region plays an important role in the recognition by this protein. The same regions of hY RNAs are essential for the association of the 52 kDa Ro protein with the RNAs, strongly suggesting that the 60 kDa Ro protein is required for the 52 kDa Ro protein to bind, presumably via protein-protein interactions, to Ro RNPs. The binding site for the La protein on hY RNAs is shown to be the oligouridylate stretch near the 3'-end of the RNAs, which is also recognized when additional nucleotides flank this motif at the 3'-side. Additional sequence elements in hY3 and hY5, but not in hY1, are bound by the La protein as well. Deletion mutagenesis showed that the RNP motif, previously identified in many ribonucleoprotein (RNP) proteins and in some cases shown to be almost sufficient for the interaction with RNA, of both the 60 kDa Ro and the La protein are not sufficient for the interaction with hY RNAs. Substantial parts of these proteins flanking the RNP motif are needed as well. It is likely that they stabilize the correct conformation of the RNP motif for RNA binding.  相似文献   

10.
Rubella virus (RV) infections in adult women can be associated with acute and chronic arthritic symptoms. In many autoimmune individuals, antibodies are found targeting endogenous proteins, called autoantigens, contained in ribonucleoprotein complexes (RNPs). In order to understand the molecular mechanisms involved in the RV-associated pathology, we investigated the nature of cellular factors binding RV RNA and whether such RNPs were recognized by antibodies in infected individuals. Previously, we noted that cellular proteins associated with the RV 5'(+) stem-loop (SL) RNA are recognized by serum with Ro reactivity. To better understand the nature of the autoantigens binding RV cis-acting elements, serum samples from individuals with various autoimmune diseases were tested for their ability to immunoprecipitate RNPs containing labeled RV RNAs. A subset of serum samples recognizing autoantigen La, or Ro and La, immunoprecipitated both the RV 5'(+)SL and 3'(+)SL RNA-protein complexes. Autoantigens binding the RV 5'(+)SL and 3'(+)SL RNAs differed in molecular mass, specificities for respective RNA binding substrates, and sensitivity to alkaline phosphatase treatment. The La autoantigen was found to interact with the RV 5'(+)SL RNA as determined by immunological techniques and binding reactions with mixtures containing recombinant La protein. To test whether there is a correlation between La binding to an RV RNA element and the appearance of an anti-La response, we measured anti-La titers in RV-infected individuals. Significant anti-La activity was detected in approximately one-third of RV-infected individuals 2 years postinfection.  相似文献   

11.
Recent studies have uncovered an unanticipated diversity of noncoding RNAs (ncRNAs), although these studies provide limited insight into their biological significance. Numerous general methods for identification and characterization of protein interactions have been developed, but similar approaches for characterizing cellular ncRNA interactions are lacking. Here we describe RNA Affinity in Tandem (RAT), an original, entirely RNA tag-based method for affinity purification of endogenously assembled RNP complexes. We demonstrate the general utility of RAT by isolating RNPs assembled in vivo on ncRNAs transcribed by RNA polymerase II or III. Using RAT in conjunction with protein identification by mass spectrometry and protein-RNA interaction assays, we define and characterize previously unanticipated protein subunits of endogenously assembled human 7SK RNPs. We show that 7SK RNA resides in a mixed population of RNPs with different protein compositions and responses to cellular stress. Depletion of a newly identified 7SK RNP component, hnRNP K, alters the partitioning of 7SK RNA among distinct RNPs. Our results establish the utility of a generalizable RNA-based RNP affinity purification method and provide insight into 7SK RNP dynamics.  相似文献   

12.
13.
45 S RNP (ribonucleoprotein) particles from calf thymus or L5178y mouse lymphoma cells contain the poly(A)-modulated and oligo(U)-binding endoribonuclease VII [Bachmann, Zahn & Müller (1983) J. Biol. Chem. 258, 7033-7040]. From these particles a 4.5 S RNA was isolated that possesses an oligo(U) sequence. By using monospecific and non-cross-reacting antibodies directed against the La or Ro antigen, both proteins were identified in the endoribonuclease VII-RNP complex after phosphorylation in vitro. In a second approach, endoribonuclease VII activity was identified in immunoaffinity-purified Ro RNPs after preparative isoelectric focusing. Therefore we conclude that the 4.5 S RNA belongs to the Ro RNAs. The results indicate a possible function of endoribonuclease VII in activating stored mRNAs.  相似文献   

14.
15.
16.
Here we discuss the hypothesis that the RNA components of the Ro ribonucleoproteins (RNPs), the Y RNAs, can be processed into microRNAs (miRNAs). Although Ro RNPs, whose main protein components Ro60 and La are targeted by the immune system in several autoimmune diseases, were discovered many years ago, their function is still poorly understood. Indeed, recent data show that miRNA-sized small RNAs can be generated from Y RNAs. This hypothesis leads also to a model in which Ro60 acts as a modulator in the Y RNA-derived miRNA biogenesis pathway. The implications of these Y RNA-derived miRNAs, which may be specifically produced under pathological circumstances such as in autoimmunity or during viral infections, for the enigmatic function of Ro RNPs are discussed.  相似文献   

17.
18.
R A Padgett  S M Mount  J A Steitz  P A Sharp 《Cell》1983,35(1):101-107
A mouse monoclonal antibody and human autoimmune sera directed against various classes of small ribonucleoprotein particles have been tested for inhibition of mRNA splicing in a soluble in vitro system. The splicing of the first and second leader exons of adenovirus late RNA was inhibited only by those sera that reacted with U1 RNP. Both U1 RNP-specific human autoimmune serum and sera directed against the Sm class of small nuclear RNPs, including a mouse monoclonal antibody, specifically inhibited splicing. Antisera specific for U2 RNP had no effect on splicing nor did antisera specific for the La or Ro class of small RNPs. These results suggest that U1 RNP is essential for the splicing of mRNA precursors.  相似文献   

19.
Fu D  Collins K 《Molecular cell》2007,28(5):773-785
The identities and roles of proteins associated with human telomerase remain poorly defined. To gain insight, we undertook an affinity purification of endogenously assembled human telomerase complexes. We show that specific subsets of H/ACA, Sm, and hnRNP proteins associate with active and inactive telomerase RNPs, while two NTPase proteins associate preferentially with active enzyme. All three core H/ACA-motif binding proteins are telomerase holoenzyme components essential for RNP accumulation. On the other hand, telomerase RNPs lacking interaction with Sm proteins or hnRNP C remain fully functional for telomere elongation. Curiously, overexpression of either associated hnRNP protein (hnRNP C and hnRNP U) or either NTPase protein (NAT10 and GNL3L) induced telomere shortening. Our findings suggest that endogenous human telomerase complexes are more heterogeneous than those of single-celled eukaryotes, have predominantly shared rather than telomerase-specific proteins, and make numerous regulatory interactions.  相似文献   

20.
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3F (APOBEC3F [A3F]) and A3G proteins are effective inhibitors of infection by various retroelements and share approximately 50% amino acid sequence identity. We therefore undertook comparative analyses of the protein and RNA compositions of A3F- and A3G-associated ribonucleoprotein complexes (RNPs). Like A3G, A3F is found associated with a complex array of cytoplasmic RNPs and can accumulate in RNA-rich cytoplasmic microdomains known as mRNA processing bodies or stress granules. While A3F RNPs display greater resistance to disruption by RNase digestion, the major protein difference is the absence of the Ro60 and La autoantigens. Consistent with this, A3F RNPs also lack a number of small polymerase III RNAs, including the RoRNP-associated Y RNAs, as well as 7SL RNA. Alu RNA is, however, present in A3F and A3G RNPs, and both proteins suppress Alu element retrotransposition. Thus, we define a number of subtle differences between the RNPs associated with A3F and A3G and speculate that these contribute to functional differences that have been described for these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号