首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRPV1 (transient receptor potential cation channel, subfamily V, member 1) is best studied in peripheral sensory neurons as a pain receptor; however TRPV1 is expressed in numerous tissues and cell types including those of the cardiovascular system. TRPV1 expression is upregulated in the hypertrophic heart, and the channel is positioned to receive stimulatory signals in the hypertrophic heart. We hypothesized that TRPV1 has a role in regulating cardiac hypertrophy. Using transverse aortic constriction to model pressure overload cardiac hypertrophy we show that mice lacking functional TRPV1, compared to wild type, have improved heart function, and reduced hypertrophic, fibrotic and apoptotic markers. This suggests that TRPV1 plays a role in the progression of cardiac hypertrophy, and presents a possible therapeutic target for the treatment of cardiac hypertrophy and heart failure.  相似文献   

2.
3.
TRPV1-null mice are protected from diet-induced obesity   总被引:1,自引:0,他引:1  
Motter AL  Ahern GP 《FEBS letters》2008,582(15):2257-2262
We explored a role for the capsaicin receptor, transient receptor potential channel vanilloid type 1 (TRPV1), in the regulation of feeding and body mass. On a 4.5% fat diet, wild-type and TRPV1-null mice gained equivalent body mass. On an 11% fat diet, however, TRPV1-null mice gained significantly less mass and adiposity; at 44 weeks the mean body weights of wild-type and TRPV1-null mice were approximately 51 and 34g, respectively. Both groups of mice consumed equivalent energy and absorbed similar amounts of lipids. TRPV1-null mice, however, exhibited a significantly greater thermogenic capacity. Interestingly, we found that 3T3-L1 preadipocytes expressed functional calcitonin gene-related peptide receptors. Thus, these data support a potential neurogenic mechanism by which TRPV1-sensitive sensory nerves may regulate energy and fat metabolism.  相似文献   

4.
Poly(ADP-ribose) polymerase-1 (PARP), a chromatin-bound enzyme, is activated by cell oxidative stress. Because oxidative stress is also considered a main component of angiotensin II-mediated cell signaling, it was postulated that PARP could be a downstream target of angiotensin II-induced signaling leading to cardiac hypertrophy. To determine a role of PARP in angiotensin II-induced hypertrophy, we infused angiotensin II into wild-type (PARP(+/+)) and PARP-deficient mice. Angiotensin II infusion significantly increased heart weight-to-tibia length ratio, myocyte cross-sectional area, and interstitial fibrosis in PARP(+/+) but not in PARP(-/-) mice. To confirm these results, we analyzed the effect of angiotensin II in primary cultures of cardiomyocytes. When compared with PARP(-/-) cardiomyocytes, angiotensin II (1 microM) treatment significantly increased protein synthesis in PARP(+/+) myocytes, as measured by (3)H-leucine incorporation into total cell protein. Angiotensin II-mediated hypertrophy of myocytes was accompanied with increased poly-ADP-ribosylation of nuclear proteins and depletion of cellular NAD content. When cells were treated with cell death-inducing doses of angiotensin II (10-20 microM), robust myocyte cell death was observed in PARP(+/+) but not in PARP(-/-) myocytes. This type of cell death was blocked by repletion of cellular NAD levels as well as by activation of the longevity factor Sir2alpha deacetylase, indicating that PARP induction and subsequent depletion of NAD levels are the sequence of events causing angiotensin II-mediated cardiomyocyte cell death. In conclusion, these results demonstrate that PARP is a nuclear integrator of angiotensin II-mediated cell signaling contributing to cardiac hypertrophy and suggest that this could be a novel therapeutic target for the management of heart failure.  相似文献   

5.
Excessive glutamate release is associated with neuronal damage. A new strategy for the treatment of neuronal injury involves inhibition of the neuropeptidase glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked acidic dipeptidase. GCP II is believed to mediate the hydrolysis of N-acetyl-aspartyl-glutamate (NAAG) to glutamate and N-acetyl-aspartate, and inhibition of NAAG peptidase activity (by GCP II and other peptidases) is neuroprotective. Mice were generated in which the Folh1 gene encoding GCP II was disrupted (Folh1-/- mice). No overt behavioral differences were apparent between Folh1-/- mice and wild-type littermates, with respect to their overall performance in locomotion, coordination, pain threshold, cognition and psychiatric behavioral paradigms. Morphological analysis of peripheral nerves, however, showed significantly smaller axons (reduced myelin sheaths and axon diameters) in sciatic nerves from Folh1-/- mice. Following sciatic nerve crush, Folh1-/- mice suffered less injury and recovered faster than wild-type littermates. In a model of ischemic injury, the Folh1-/- mice exhibited a significant reduction (p < 0.05) in infarct volume compared with their wild-type littermates when subjected to middle cerebral artery occlusion, a model of stroke. These findings support the hypothesis that GCP II inhibitors may represent a novel treatment for peripheral neuropathies as well as stroke.  相似文献   

6.
7.
8.
9.
Sarcomere shortening during contraction was measured by using laser diffraction, in thin, rabbit right ventricular (RV) trabeculae from normal hearts (N) (n = 5) and from hearts subjected to RV pressure overload by pulmonary banding (H) (n = 5). Banding resulted in substantial RV hypertrophy after 2 wk. Hypertrophied preparations had the same resting muscle length (H = 3.15 +/- 0.29 mm) and resting sarcomere lengths (H = 2.16 +/- 0.005 micron) as the normal preparations (3.10 +/- 0.37 mm, 2.16 +/- 0.008 micron, respectively). Total tension at the peak of isometric twitches was the same as normal in the hypertrophied muscles (N = 8.06 +/- 1.20, H = 8.51 +/- 1.95 g/mm2). However, the amount of auxotonic sarcomere shortening was much less than normal in the hypertrophied preparations (N = 0.39 +/- 0.028, H = 0.19 +/- 0.034 micron; P less than 0.001). In isotonic contractions in which the ratio of muscle shortening to resting muscle length was the same in both the normal and hypertrophied muscles (ratio of 0.05 in both groups), the extent of sarcomere shortening relative to resting sarcomere length was less in the hypertrophied muscles than in the normal preparations (N = 0.14 +/- 0.01), H = 0.07 +/- 0.01; P less than 0.01). Series elasticity was the same as normal in the hypertrophied muscle P less than 0.05). Less auxotonic sarcomere shortening for a given level of isometric tension development and less isotonic sarcomere shortening per unit muscle shortening indicate that there is less than normal work per sarcomere during contraction in hypertrophied myocardium. These findings may have important implications for intracellular compensatory adaptation in pressure overload cardiac hypertrophy.  相似文献   

10.
Impaired pressure sensation in mice lacking TRPV4   总被引:18,自引:0,他引:18  
The sensation of pressure, mechanosensation, in vertebrates remains poorly understood on the molecular level. The ion channel TRPV4 is in the TRP family and is a candidate for a mechanosensitive calcium-permeable channel. It is located in dorsal root ganglia. In the present study, we show that disrupting the Trpv4 gene in mice markedly reduced the sensitivity of the tail to pressure and acidic nociception. The threshold to noxious stimuli and the conduction velocity of myelinated nerve responding to stimuli were also impaired. Activation of unmyelinated nerve was undetected. However, the mouse still retained olfaction, taste sensation, and heat avoidance. The TRPV4 channel expressed in vitro in Chinese hamster ovary cells was opened by low pH, citrate, and inflation but not by heat or capsaicin. These data identify the TRPV4 channel as essential for the normal detection of pressure and as a receptor of the high-threshold mechanosensory complex.  相似文献   

11.
Interleukin (IL)-18 is a cardiotropic proinflammatory cytokine chronically elevated in the serum of patients with cardiac hypertrophy (LVH). The purpose of this study was to examine the role of IL-18 in pressure-overload hypertrophy using wild type (WT) and IL-18 -/- (null) mice. Adult male C57Bl/6 mice underwent transaortic constriction (TAC) for 7days or sham surgery. Heart weight/body weight ratios showed blunted hypertrophy in IL-18 null TAC mice compared to WT TAC animals. Microarray analyses indicated differential expression of hypertrophy-related genes in WT versus IL-18 nulls. Northern, Western, and EMSA analyses showed Akt and GATA4 were increased in WT but unchanged in IL-18 null mice. Our results demonstrate blunted hypertrophy with reduced expression of contractile-, hypertrophy-, and remodeling-associated genes following pressure overload in IL-18 null mice, and suggest that IL-18 plays a critical role in the hypertrophic response.  相似文献   

12.
Increased activity of Ser/Thr protein phosphatases types 1 (PP1) and 2A (PP2A) during maladaptive cardiac hypertrophy contributes to cardiac dysfunction and eventual failure, partly through effects on calcium metabolism. A second maladaptive feature of pressure overload cardiac hypertrophy that instead leads to heart failure by interfering with cardiac contraction and intracellular transport is a dense microtubule network stabilized by decoration with microtubule-associated protein 4 (MAP4). In an earlier study we showed that the major determinant of MAP4-microtubule affinity, and thus microtubule network density and stability, is site-specific MAP4 dephosphorylation at Ser-924 and to a lesser extent at Ser-1056; this was found to be prominent in hypertrophied myocardium. Therefore, in seeking the etiology of this MAP4 dephosphorylation, we looked here at PP2A and PP1, as well as the upstream p21-activated kinase 1, in maladaptive pressure overload cardiac hypertrophy. The activity of each was increased persistently during maladaptive hypertrophy, and overexpression of PP2A or PP1 in normal hearts reproduced both the microtubule network phenotype and the dephosphorylation of MAP4 Ser-924 and Ser-1056 seen in hypertrophy. Given the major microtubule-based abnormalities of contractile and transport function in maladaptive hypertrophy, these findings constitute a second important mechanism for phosphatase-dependent pathology in the hypertrophied and failing heart.  相似文献   

13.
14.
Left ventricular hypertrophy with adequate wall thickness, preserved adult phenotype and extracellular matrix may be useful in the prevention of heart failure. Because activation of subtype 1 of angiotensin II (AT1) receptors is thought to be involved in the hypertrophic response of cardiomyocytes, we tested the potential of systemic AT1 blockade to modify the development of left ventricular hypertrophy due to pressure overload.Sham-operated rats and rats with ascending aorta constriction were treated with losartan (30 mg/kg/day) for 8 weeks. Left ventricular geometry, dynamics of isovolumic contractions, hydroxyproline concentration as well as myosin isozymes (marker of fetal phenotype) were assessed. Rats with aortic constriction exhibited a marked increase in left ventricular weight and the diastolic pressure-volume relationship was shifted to smaller volumes. An enlarged ventricular pressure-volume area and increased (p < 0.05) peak values of +dP/dtmax and -dP/dtmax demonstrated an enhanced overall ventricular performance. Signs of congestive heart failure were not apparent. In contrast, parameters of myocardial fimction (normalized length-stress area, +d/dtmax and -d/dtmax) were depressed (p < 0.05), indicating an impaired myocardial contractility. The hydroxyproline concentration remained unaltered. However, the proportion of -myosin heavy chains (NMC) was increased (p < 0.05). Administration of losartan decreased (p < 0.05) blood pressure and body weight in sham operated and pressure overloaded rats. By contrast, neither the concentric left ventricular hypertrophy or depressed myocardial function nor the increased -MHC expression were significantly altered. Thus, activation of AT1 receptors appears not to be involved in the initial expression of the fetal phenotype of pressure overloaded heart which may be responsible for the progressive functional deterioration of the hypertrophied ventricle.  相似文献   

15.
16.
In studies of myosin from left and right ventricles of normal hearts and hypertrophic hearts at 5 weeks and 13 weeks after aortic banding, polyacrylamide gel electrophoresis shows intermediate molecular weight components which derive from heavy chains fragmented in the presence of dodecyl sulfate. The proportion of degraded heavy chains is greater in myosin from hypertrophic hearts than normal hearts, with comparable degradation in left and right ventricle myosin. The observed fragmentation of myosin results from proteolysis due to contaminant proteases or a thermally activated, heat-stable nonenzymatic process, or both. The susceptibility of heavy chains to crude myofibrillar proteases differs in normal and hypertrophic cardiac myosin; however, the kinetics of tryptic digestion are identical for both myosins. With precautions to minimize proteolytic artifacts on dodecyl sulfate-polyacrylamide gel electrophoresis, preparations of myosin from left and right ventricles of normal and hypertrophic hearts exhibit comparable subunit composition, with approximately molar ratios of heavy chains, light chain L1, and light chain L2. Comparable stoichiometry for the light chain fraction is determined by high speed sedimentation equilibrium at pH 11 and direct fractionation of the different cardiac myosins. We do not confirm reports (e.g. Wikman-Coffelt, J., Fenner, C., Smith, A., and Mason, D. T. (1975) J. Biol. Chem. 250, 1257-1262) of different proportions of light chains in left and right ventricle myosin of normal and hypertrophic canine hearts. The light chains display microheterogeneity, with L1 generating two isoelectric variants and L2 generating two major and two minor variants, but identical mobilities and isoelectric values are obtained in the different myosin preparations.  相似文献   

17.
Myocardial activities and isozyme distributions of creatine kinase (CK) and lactate dehydrogenase (LDH) were measured in rats with moderate pressure overload hypertrophy. Three weeks after aortic banding, the ratio of left ventricular (LV) weight to body weight increased by 30%. Values for enzyme activity in the hypertrophied LV were compared to values for control rats as well as to the contralateral relatively unaffected right ventricle (RV). In rats with moderate LV hypertrophy, total CK activity was unchanged. The percent MB-CK increased significantly (p less than 0.01) only in the hypertrophied LV, from 13 +/- 1% to 19 +/- 1% of total CK, while the sum of MM and mitochondrial-CK decreased from 86 +/- 3 to 80 +/- 3% (p less than 0.01). LDH activity increased (p less than 0.05) only in the hypertrophied ventricle from a control of 2.90 +/- 0.13 to 3.21 +/- 0.13 IU/mg protein, while the ratio of LDH activity at high to low substrate increased from 0.12 +/- 0.02 to 0.14 +/- 0.02 (p less than 0.05). Thus, the development of moderate pressure overload hypertrophy in the LV is associated with normal levels of total CK, but the percentage of MB-CK increases selectively in the primarily affected ventricle. Also, total LDH and LDH activity at high to low substrate concentration increases significantly in LV hypertrophy.  相似文献   

18.
Heart failure is becoming a global epidemic. It exerts a staggering toll on quality of life, and substantial medical and economic impact. In a pre-clinical model of cardiac hypertrophy and heart failure, we were able to overcome loss of heart function by administering the TRPV1 antagonist BCTC (4-(3-Chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide). The results presented here identify TRPV1 antagonists as new treatment options for cardiac hypertrophy and heart failure.  相似文献   

19.
Taurine is the most abundant free amino acid in heart muscle and protects against heart failure. In the present study, the consequences of hereditary taurine deficiency on cardiac gene expression were examined in 2- and 15-16-month-old taurine transporter knockout (taut(-/-)) mice using a mouse-specific DNA microarray. This oligonucleotide-based microarray contains probes for 251 genes with relevance for heart function. Of these, 163 probes exhibited a reproducible hybridization signal and were analyzed. alpha-Actin type 1 mRNA levels were 70% lower in the heart of young and older taut(-/-) mice compared to wild-type controls. Interestingly, the hearts of taut(-/-) mice showed a switch from alpha-actin 1 to alpha-actin 2 expression, as confirmed by real-time PCR and Western blot analysis. In addition, mRNA levels of biomarkers for pressure overload and hypertension were upregulated in taut(-/-) hearts, i.e., atrial natriuretic factor (+848%), brain natriuretic peptide (+90%), cardiac ankyrin repeat protein (+118%), and procollagen 1a1, 1a2 and 3a1 (+40% at least). These results point to a stress situation in the heart of taut(-/-) mice under laboratory conditions, and it can be speculated that taut(-/-) hearts may be even more susceptible to failure in the wild when under exogenous stress.  相似文献   

20.
Besides the reduction of angiotensin II formation, locally increased kinins may play a role in the cardiovascular action of angiotensin converting enzyme (ACE) inhibitors.To characterize the contribution of bradykinin to the effects of ACE inhibition by captopril on the development of pressure overload hypertrophy, sham-operated rats and rats with ascending aortic constriction were treated with captopril (80 mg/kg/day) or captopril and B2-kinin receptor antagonist HOE 140 (0.5 mg/kg/day) for 7 weeks. Left ventricular mass and geometry, hydroxyproline concentration and myosin isozymes (marker of a fetal phenotype) were assessed. Rats with aortic constriction exhibited a marked increase in left ventricular weight and diastolic pressure-volume relationship was shifted to smaller volumes. Signs of congestive heart failure were not apparent. The hydroxyproline concentration remained unaltered. However, the proportion of isomyosin V3 was increased (p < 0.05). Administration of captopril reduced (p < 0.05) systolic blood pressure, body and cardiac weight in all treated rats. The reduction of left ventricular weight was disproportionally higher in pressure overloaded rats, thus the relative left ventricular weight decreased by 15% (p < 0.05). Captopril augmented the isomyosin V1 expression (p < 0.05) in sham operated as well as pressure overloaded rats. The isomyosin V1 percentage was inversely related to the relative left ventricular weight. Two different (p < 0.05) correlation lines were detected for untreated and captopril treated rats. None of captopril associated effects were removed by simultaneously administered B2 kinin receptor antagonist HOE 140.Thus, stimulation of bradykinin B2 receptor appears not to mediate the effects of captopril on cardiac growth and contractile proteins during the development of pressure overload hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号