首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Platelet-derived endothelial cell growth factor (PD-ECGF) is a 45 kDa single chain polypeptide which stimulates endothelial cell growth and chemotaxis in vitro and angiogenesis in vivo. Analysis of a full length PD-ECGF cDNA revealed an open reading frame coding for 482 amino acids without homology to other known proteins. No signal sequence was observed, and analysis of the biosynthesis and processing of PD-ECGF in a thyroid carcinoma cell line revealed that PD-ECGF is released only very slowly. PD-ECGF becomes covalently associated with nucleotide triphosphates (e.g., ATP) in vivo, as well as in vitro. The physiological significance of this posttranslational modification remains to be elucidated. The tissue distribution and target cell specificity of PD-ECGF suggest roles in angiogenesis (e.g., during wound healing and in the developing placenta), as well as in the maintenance of the integrity of the endothelial cell lining of large vessels.  相似文献   

2.
3.
4.
Vascular endothelial cells (ECs) are usually difficult to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement (ECGS). The expression of VEGF by HUVEC tansfected with VEGF gene was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS., However, when the culture medium was supplied with 2.5 ng/mL of basic fibroblast growth factor (bFGF), a synergistic effect of VEGF and bFGF was observed. In this case, the final cell density was recovered up to about 78% of maxium value.  相似文献   

5.
《Free radical research》2013,47(10):1124-1135
Abstract

Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.  相似文献   

6.
Repair of a vascular wound is mediated by migration and subsequent replication of the endothelial cells that form the inner lining of blood vessels. We have measured the growth response of human umbilical vein endothelial cells (HuE) to two polypeptides that are transiently produced in high concentrations at the site of a wound; the platelet-derived growth factor (PDGF) and the protease thrombin. When 104 HuE cells are seeded as a dense island (2-mm diameter) in the center of a 16-mm tissue culture well in medium containing 20% human serum derived from platelet-poor plasma (PDS), no increase in cell number or colony size is observed. With the addition of 0.5 ng/ml partially purified PDGF, colony size increases and the number of cells after 8 days is 4.8 × 104. When human thrombin (1 μg/ml) is added along with the PDGF, the cell number rises to 9.2 × 104. Thrombin alone stimulates no increase in cell number. Although partially purified PDGF stimulates endothelial cells maintained in PDS as well as those maintained in whole blood serum (WBS), pure PDGF is active only when assayed in medium that contains WBS and is supplemented with thrombin. These results suggest the existence of a second class of platelet-derived factors that enable HuE cells to respond to the mitogenic activity of the purified platelet mitogen and thrombin.  相似文献   

7.
In adult vessels the proliferation rate of differentiated endothelial cells is very low. In response to several environmental stimuli the expression of so-called ‘angiogenic factors’ is upregulated and the messenger RNAs are actively translated in secreted factors which induce the proliferation of endothelial cells; the digestion of their basement membrane then allows their migration and differentiation. Considerable progress has been made during the past years in elucidating the molecular actors of angiogenesis. Vascular endothelial growth factor turned out to represent the major inducer of angiogenesis. Optional splicing of its pre-messenger RNA generates various isoforms which differ not only by their storage in the extracellular matrix but also by their signaling pathways.  相似文献   

8.
Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs break down the extracellular matrix (ECM), migrate, differentiate and undergo tube morphogenesis. Evidently, the ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behaviour. Using a chemically and mechanically tunable hydrogel to study tube morphogenesis in vitro, we show that vascular endothelial growth factor (VEGF) and substrate mechanics co‐regulate tubulogenesis of EPCs. High levels of VEGF are required to initiate tube morphogenesis and activate matrix metalloproteinases (MMPs), which enable EPC migration. Under these conditions, the elasticity of the substrate affects the progression of tube morphogenesis. With decreases in substrate stiffness, we observe decreased MMP expression while increased cellular elongation, with intracellular vacuole extension and coalescence to open lumen compartments. RNAi studies demonstrate that membrane type 1‐MMP (MT1‐MMP) is required to enable the movement of EPCs on the matrix and that EPCs sense matrix stiffness through signalling cascades leading to the activation of the RhoGTPase Cdc42. Collectively, these results suggest that coupled responses for VEGF stimulation and modulation of substrate stiffness are required to regulate tube morphogenesis of EPCs.  相似文献   

9.
Yue F  Zhang GP  Jin HM 《生理学报》2006,58(2):124-128
本文研究了碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)对小鼠脑微血管内皮细胞(microvascular endothelial cell, MVEC)株bEnd.3中血管新生相关基因表达谱的改变,并重点从mRNA、蛋白质和细胞水平检测bFGF对血管新生旁观分子环加氧酶-2(cyclooxygenase-2,COX-2)表达的影响。用特异性小鼠血管新生基因芯片高通量检测bEnd.3细胞基因谱表达的改变,分析促血管新生基因及抑制血管新生的基因表达谱的变化;用RT—PCR、Western blot、免疫细胞化学等方法分别从mRNA、蛋白质和细胞水平检测COX-2表达变化及细胞内的定位。结果发现用10ng/ml的bFGF刺激bEnd.3细胞2h后多种促血管新生基因表达明显上调,如Adamtsl、MMP-9、Ang-1、PDGFB、G—CSF、FGFl6、IGF-1等分别上调3、8、120、5.2、4.5、1.7、2.7倍。与此同时,多种抑制血管新生的基因表达相应下调,如TSP-3、TIMP-2、TGFβ1等表达分别下调3.4、1.5和3.5倍。RT-PCR和Western blot的结果证实,bFGF可以上调COX-2mRNA的表达和蛋白质的合成。免疫组化的结果表明,COX-2主要分布在胞浆。以上结果提示:bFGF具有上调促血管新生基因表达,下调抑制血管新生基因表达的作用,两者协同作用,促进血管新生。同时bFGF还可以明显促进血管新生旁观分子COX-2mRNA的表达和蛋白质的合成。本文讨论了bFGF引起MVEC内COX-2表达上调的意义。  相似文献   

10.
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.  相似文献   

11.
12.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mediator of angiogenesis and vasculogenesis. VEGF is involved pathologically in cancer, proliferative retinopathy and rheumatoid arthritis, and as such represents an important therapeutic target. Three classes of disulfide-constrained peptides that antagonize binding of the VEGF dimer to its receptors, KDR and Flt-1, were identified previously using phage display methods. NMR studies of a representative peptide from the most potent class of these peptide antagonists, v107 (GGNECDAIRMWEWECFERL), were undertaken to characterize its interactions with VEGF. v107 has no defined structure free in solution, but binding to VEGF induces folding of the peptide. The solution structure of the VEGF receptor-binding domain-v107 complex was determined using 3940 (1970 per VEGF monomer) internuclear distance and 476 (238 per VEGF monomer) dihedral angle restraints derived from NMR data obtained using samples containing either (13)C/(15)N-labeled protein plus excess unlabeled peptide or (13)C/(15)N-labeled peptide plus excess unlabeled protein. Residual dipolar coupling restraints supplemented the structure determination of the complex and were found to increase significantly both the global precision of VEGF in the complex and the agreement with available crystal structures of VEGF. The calculated ensemble of structures is of high precision and is in excellent agreement with the experimental restraints. v107 has a turn-helix conformation with hydrophobic residues partitioned to one face of the peptide and polar or charged residues at the other face. Contacts between two v107 peptides and the VEGF dimer are mediated by primarily hydrophobic side-chain interactions. The v107-binding site on VEGF overlaps partially with the binding site of KDR and is similar to that for domain 2 of Flt-1. The structure of the VEGF-v107 complex provides new insight into how binding to VEGF can be achieved that may be useful for the design of small molecule antagonists.  相似文献   

13.
Interleukin-6 (IL-6) is a proinflammatory cytokine associated with the disease status of gastric carcinoma (GC). Vascular endothelial growth factor (VEGF) is a potent tumor angiogenic factor in GC. In this study, we attempted to clarify whether IL-6 can regulate VEGF and angiogenesis in GC. GC samples from 54 surgical specimens were subjected to immunohistochemical examination of IL-6, VEGF, and tumor microvessels, and results showed that IL-6 was positively correlated with VEGF expression and tumor vasculature. We determined VEGF expression in four GC cell lines by ELISA, revealing that GC cells can produce significant amount of VEGF with increasing dose and duration of IL-6 stimulation. Next, a luciferase reporter gene assay was employed to determine the signaling pathway driving the VEGF promoter by IL-6, which showed that the JAK/STAT pathway is involved in the stimulation of VEGF gene expression. The effects of IL-6 on angiogenesis in vitro and in vivo were evaluated by HUVEC studies and the Matrigel plug assay, respectively. Results showed that IL-6 effectively promoted HUVEC proliferation and tube formation in vitro and Matrigel plug vascularization in vivo, primarily by inducing VEGF in GC. This study provides evidence that the multifunctional cytokine, IL-6, may induce VEGF expression which increases angiogenesis in gastric carcinogenesis.  相似文献   

14.
Growth factor-induced signaling by receptor tyrosine kinases (RTKs) plays a central role in embryonic development and in pathogenesis and, hence, is tightly controlled by several regulatory proteins. Recently, Sprouty, an inhibitor of Drosophila development-associated RTK signaling, has been discovered. Subsequently, four mammalian Sprouty homologues (Spry-1-4) have been identified. Here, we report the functional characterization of two of them, Spry-1 and -2, in endothelial cells. Overexpressed Spry-1 and -2 inhibit fibroblast growth factor- and vascular endothelial growth factor-induced proliferation and differentiation by repressing pathways leading to p42/44 mitogen-activating protein (MAP) kinase activation. In contrast, although epidermal growth factor-induced proliferation of endothelial cells was also inhibited by Spry-1 and -2, activation of p42/44 MAP kinase was not affected. Biochemical and immunofluorescence analysis of endogenous and overexpressed Spry-1 and -2 reveal that both Spry-1 and -2 are anchored to membranes by palmitoylation and associate with caveolin-1 in perinuclear and vesicular structures. They are phosphorylated on serine residues and, upon growth factor stimulation, a subset is recruited to the leading edge of the plasma membrane. The data indicate that mammalian Spry-1 and -2 are membrane-anchored proteins that negatively regulate angiogenesis-associated RTK signaling, possibly in a RTK-specific fashion.  相似文献   

15.
Developmentally regulated endothelial cell locus 1 (Del1) is a new angiogenic molecules expressed specifically in early embryonic endothelial cells. We investigated the relationship between Del1 and tumor cell-derived vascular endothelial growth factor (VEGF). Dunn osteosarcoma cells and high- and low-metastatic murine sarcoma cells did not express Del1. However, the expression of Del1 was observed in these primary tumor tissues and the pulmonary metastatic tissues after subcutaneous inoculation in vivo. Every tumor cell-conditioned medium containing VEGF induced the expression of Del1 in murine lung microvascular endothelial (MLE) cells, although control MLE cells did not express Del1. The anti-mouse VEGF monoclonal antibody inhibited the induction of the Del1 expression. In addition, mouse recombinant interleukin-1alpha and tumor necrosis factor-alpha also induced Del1 in MLE cells. Del1 may play an important role in tumor angiogenesis through the effects of tumor-derived factors including VEGF.  相似文献   

16.
Beta-amyloid peptides (Aβ) are the major constituents of senile plaques and cerebrovascular deposits in the brains of Alzheimer's disease patients. We have shown previously that soluble forms of Aβ are anti-angiogenic both in vitro and in vivo . However, the mechanism of the anti-angiogenic activity of Aβ peptides is unclear. In this study, we examined the effects of Aβ1–42 on vascular endothelial growth factor receptor 2 (VEGFR-2) signaling, which plays a key role in angiogenesis. Aβ inhibited VEGF-induced migration of endothelial cells, as well as VEGF-induced permeability of an in vitro model of the blood brain barrier. Consistently, exogenous VEGF dose-dependently antagonized the anti-angiogenic activity of Aβ in a capillary network assay. Aβ1–42 also blocked VEGF-induced tyrosine phosphorylation of VEGFR-2 in two types of primary endothelial cells, suggesting an antagonistic action of Aβ toward VEGFR-2 signaling in cells. Moreover, Aβ was able to directly interact with the extracellular domain of VEGFR-2 and to compete with the binding of VEGF to its receptor in a cell-free assay. Co-immunoprecipitation experiments confirmed that Aβ can bind VEGFR-2 both in vitro and in vivo . Altogether, our data suggest that Aβ acts as an antagonist of VEGFR-2 and provide a mechanism explaining the anti-angiogenic activity of Aβ peptides.  相似文献   

17.
软骨血管生成抑制因子抑制血管生成的研究   总被引:13,自引:1,他引:13  
小牛气管软骨经盐酸胍抽提,丙酮分级沉淀,膜超滤,柱层析等步骤得到软骨血管生成抑制因子(cartilage angiogenesis inhibiting factor,CAIF).SDS-聚丙烯酰胺凝胶电泳显示CAIF由单一组分组成,分子量为27700.通过[ 3H]-TdR掺入,活细胞检测等方法测定CAIF对内皮细胞、Hela细胞、QGY7703细胞与小鼠骨髓细胞、人皮肤成纤维细胞等的DNA合成的影响,以及细胞毒作用.采用鸡胚绒毛尿囊膜实验测定CAIF对血管生成的抑制效应.结果显示:CAIF对内皮细胞产生强的抑制作用,对Hela细胞抑制很弱,对QGY7703细胞、小鼠骨髓细胞、人皮肤成纤维细胞均无抑制作用;对鸡胚绒毛尿囊膜的血管生成产生明显的抑制作用.提示CAIF能较特异地抑制血管生成,CAIF达到电泳纯,是专一性较强的血管生成抑制因子.  相似文献   

18.
Signal transduction through the vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR) pathway has a pivotal importance in angiogenesis, and has therefore become a prime target in antitumor therapy. In search for peptides antagonizing VEGF binding to its receptors, we screened a random heptamer library displayed on phage for peptides that bind the whole VEGF165 molecule and inhibit VEGF dependent human umbilical vein endothelial cell (HUVEC) proliferation. Two selected peptides with sequences WHLPFKC and WHKPFRF were synthesized. Biacore and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis indicated that these peptides bind the VEGF homodimer in a concentration-dependent manner, with micromolar affinity, and with a 2:1 peptide: VEGF stoichiometry. They inhibited HUVEC proliferation in vitro by 77 and 55%, respectively. Taken together, our results indicate that these peptides could be potent inhibitors of angiogenesis. Furthermore, we show that the peptide-VEGF binding properties can be quantified, a prerequisite for the further optimization of binders.  相似文献   

19.
20.
目的 :观察肝细胞生长因子 (HGF)和血管内皮细胞生长因子 (VEGF)对体外培养牛冠状动脉内皮细胞(BCAEC)增殖、迁移的影响。方法 :分离和培养BCAEC ,设对照组、VEGF组、HGF组。采用四甲基偶氮唑蓝法(MTT)观察细胞增殖 ;倒置显微镜观察培养的血管内皮细胞的迁移。结果 :对照组、VEGF组、HGF组的OD值分别为 0 .2 2± 0 .0 1、0 .40± 0 .1 4、0 .44± 0 .1 5 ;VEGF组、HGF组BCAEC的增殖率分别为 81 .8%± 1 6 .9%、1 0 0 %±2 1 .1 % ;对照组BCAEC迁移不明显 ,而VEGF组和HGF组BCAEC迁移明显。结论 :VEGF、HGF能促进BCAEC增殖、迁移 ,HGF作用强度不亚于VEGF。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号