首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We utilized NTP analogues containing modified bases to probe the mechanism of NTP selection by the primase activity of the herpes simplex virus 1 helicase-primase complex. Primase readily bound NTP analogues of varying base shape, hydrophobicity, and hydrogen-bonding capacity. Remarkably, primase strongly discriminated against incorporating virtually all of the analogues, even though this enzyme misincorporates natural NTPs at frequencies as high as 1 in 7. This included analogues with bases much more hydrophobic than a natural base (e.g., 4- and 7-trifluoromethylbenzimidazole), a base of similar hydrophobicity as a natural base but with the Watson-Crick hydrogen-bonding groups in unusual positions (7-beta-d-guanine), bases shaped almost identically to the natural bases (4-aminobenzimidazole and 4,6-difluorobenzimidazole), bases shaped very differently than a natural base (e.g., 5- and 6-trifluoromethylbenzimidazole), and bases capable of forming just one Watson-Crick hydrogen bond with the template base (purine and 4-aminobenzimidazole). The only analogues that primase readily polymerized into primers (ITP and 3-deaza-ATP) were those capable of forming Watson-Crick hydrogen bonds with the template base. Thus, herpes primase appears to require the formation of Watson-Crick hydrogen bonds in order to efficiently polymerize a NTP. In contrast to primase's narrow specificity for NTP analogues, the DNA-dependent NTPase activity associated with the herpes primase-helicase complex exhibited very little specificity with respect to NTPs containing unnatural bases. The implications of these results with respect to the mechanism of the helicase-primase and current fidelity models are discussed.  相似文献   

2.
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.  相似文献   

3.
Experiment indicates that the N7-guanine site in DNA is not "promutagenic" (mutation-inducing) on alkylation, while the O6-guanine and O4-thymine sites are so. These differences in nucleic acid template activity are attributed to corresponding differences in acidity of the Watson-Crick hydrogen bonding protons. Mechanistic indicators for ease of Watson-Crick proton loss are calculated using molecular orbital theory for DNA bases alkylated at the N7-guanine, O6-guanine and O4-thymine sites. Their values point to a definite favouring of the proton loss for the O-alkylated bases compared to the N7-alkylguanines. This may suggest the possibility that, at biological pH, the O-alkylated bases deprotonate readily while the N7-alkylguanines do not, thus accounting for observed differences in promutagenicity and nucleic acid template activity.  相似文献   

4.
Moore CL  Zivkovic A  Engels JW  Kuchta RD 《Biochemistry》2004,43(38):12367-12374
Human DNA primase synthesizes short RNA primers that DNA polymerase alpha further elongates. Primase readily misincorporates the natural NTPs and will generate a wide variety of mismatches. In contrast, primase exhibited a remarkable resistance to polymerizing NTPs containing unnatural bases. This included bases whose shape was almost identical to the natural bases (4-aminobenzimidazole and 4,6-difluorobenzimidazole), bases shaped very differently than a natural base [e.g., 5- and 6-(trifluoromethyl)benzimidazole], bases much more hydrophobic than a natural base [e.g., 4- and 7-(trifluoromethyl)benzimidazole], bases of similar hydrophobicity as a natural base but with the Watson-Crick hydrogen-bonding groups in unusual positions (7-beta-D-guanine), and bases capable of forming only one Watson-Crick hydrogen bond with the template base (purine and 4-aminobenzimidazole). Primase only polymerized NTP analogues containing bases capable of forming hydrogen bonds between the equivalent of both N-1 and the exocyclic group at C-6 of a purine NTP (2-fluoroadenine, 2-chloroadenine, 3-deazaadenine, and hypoxanthine) and N-3 and the exocyclic group at C-4 of a pyrimidine. These data indicate that human primase requires the formation of Watson-Crick hydrogen bonds in order to polymerize a NTP, a situation very different than what is observed with some DNA polymerases. The implications of these results with respect to current theories of how polymerases discriminate between right and wrong (d)NTPs are discussed.  相似文献   

5.
The X-ray crystallographic coordinate data of a 56 DNA double helical oligomers were examined, using the molecular modeling program STR3DI32.EXE, in order to ascertain the aromatic statuses of the Watson-Crick hydrogen bonded base pairs. Several oligomers that were intercalated with anthraquinoid molecules (like the daunomycin and nogalamycin aglycones) were also included in the study in order to evaluate the aromatic statuses of the intercalated entities. This study revealed that the base pairs were aromatic in their Watson-Crick hydrogen bonded double helices, whereas they are known to be non-aromatic in situations in which they are not involved in Watson-Crick hydrogen bonding. The resonance energy gained by the aromatization of these bases, while engaged in Watson-Crick hydrogen bonding, must contribute to the stability of these DNA double helices. The anthraquinoid intercalates were revealed to be in their radical anion form, having received an electron from one of the bases between which these intercalates were sited. These anthraquinoid intercalates are therefore "held" in position by ionic - charge transfer - interactions, as well as hydrogen bonding due to their glycosidic entities. These observations are also relevant to investigations of the electrical conductivity of DNA double helices that are similarly intercalated.  相似文献   

6.
Loss of Watson-Crick protons following DNA base alkylation has been proposed as a key event which confers mutation-inducing properties on to alkylated DNA bases. In this theoretical study, the promutagenic O6-guanine and O4-thymine sites are clearly distinguished from the nonmutagenic N7-guanine site on the basis of calculated values of mechanistic indicators for Watson-Crick proton acidity following alkylation at these respective sites. The degree of acidity predicted for these protons for each type of alkylated base accords well with the presence or absence of mutagenicity observed experimentally in each case.  相似文献   

7.
8.
On the occurrence of the T-loop RNA folding motif in large RNA molecules   总被引:4,自引:0,他引:4  
The T-loop RNA folding motif may be considered as a five-nucleotide motif composed of a U-turn flanked by a noncanonical base pair. It was recently proposed that the flanking noncanonical base pair is always a UA trans Watson-Crick/Hoogsteen base pair stacked on a Watson-Crick base pair on one side. Here we show that structural analysis of several large RNA molecules, including the recently solved crystal structure of the specificity domain of Bacillus subtilis RNase P, combined with sequence analysis, indicates a broader sequence consensus for the motif. Additionally, we show that the flanking base pair does not necessarily stack on a Watson-Crick base pair and the 3' terminus of the five-nucleotide motif is often followed by a sharp turn in the phosphate backbone rather than just a bulged base or bases.  相似文献   

9.
10.
The Tetrahymena ribozyme has been shown to catalyze an RNA polymerase-like reaction in which an RNA primer is extended by the sequential addition of pN nucleotides derived from GpN dinucleotides, where N = A, C, or U. Here, we show that this reaction is influenced by the presence of a template; bases that can form Watson-Crick base pairs with a template add as much as 25-fold more efficiently than mismatched bases. A mutant enzyme with an altered guanosine binding site can catalyze template-directed primer extension with all four bases when supplied with dinucleotides of the form 2-aminopurine-pN.  相似文献   

11.
In order to investigate mutation mechanism with oxyamine, two DNA dodecamers containing 2'-deoxy-N6-methoxyadenosine have been synthesized and their crystal structures have been determined. The dodecamers are associated in B form duplexes. The methoxy groups attached to the adenine bases do not affect the DNA conformation significantly. Electron densities clearly show that N6-methoxyadenine moiety forms Watson-Crick type pairing with both, thymine and cytosine bases. Such two faces in pairing are the origin of pyrimidine transition mutation.  相似文献   

12.
The crystal structure of DNA dodecamer with the sequence of d(CGCAAATTXGCG), where X is 2'-deoxy-N4-methoxycytidine, has been determined by X-ray analysis. The dodecamers form a double helix with B-form conformation. The electron density indicates that the two modified cytosine bases respectively make a pair with the adenine bases on the opposite strand in a manner of Watson-Crick geometry and that the methoxy groups are in anti conformation to the N3 atom.  相似文献   

13.
Relative positions of bases to bases in a crystal structure of ribosome were analyzed extensively. It was found that there is no clear relation between bases apart more than 15 A and, thus, the relative location of bases can be analyzed within 15 A of the reference bases. As for base pairing, major positioning was found to be due to the Watson-Crick type base pairs. Some other positions corresponding to non-Watson-Crick type base pairs were also found in some extents. As for base-base stacking, it was observed that the bases stacked to adenine base are dispersive. It was found that less non-Watson-Crick base pairs was found close to the protein binding site, suggesting that the protein components have a tendency to bind to the regular stem structures. The database of relative location of bases must be useful for improvement of structural determination and structural modeling systems.  相似文献   

14.
15.
Adeno-associated virus serotype 2 (AAV-2) can preferentially integrate its DNA into a 4-kb region of human chromosome 19, designated AAVS1. The nicking activity of AAV-2's Rep68 or Rep78 proteins is essential for preferential integration. These proteins nick at the viral origin of DNA replication and at a similar site within AAVS1. The current nicking model suggests that the strand containing the nicking site is separated from its complementary strand prior to nicking. In AAV serotypes 1 through 6, the nicking site is flanked by a sequence that is predicted to form a stem-loop with standard Watson-Crick base pairing. The region flanking the nicking site in AAVS1 (5'-GGCGGCGGT/TGGGGCTCG-3' [the slash indicates the nicking site]) lacks extensive potential for Watson-Crick base pairing. We therefore performed an empirical search for a stable secondary structure. By comparing the migration of radiolabeled oligonucleotides containing wild-type or mutated sequences from the AAVS1 nicking site to appropriate standards, on native and denaturing polyacrylamide gels, we have found evidence that this region forms a stable secondary structure. Further confirmation was provided by circular dichroism analyses. We identified six bases that appear to be important in forming this putative secondary structure. Mutation of five of these bases, within the context of a double-stranded nicking substrate, reduces the ability of the substrate to be nicked by Rep78 in vitro. Four of these five bases are outside the previously recognized GTTGG nicking site motif and include parts of the CTC motif that has been demonstrated to be important for integration targeting.  相似文献   

16.
The exchangeable N1 imino protons of two pseudouridine (psi) bases located at adjacent internal positions within an undecamer RNA duplex (5'AUAC psi psi ACCUG/3'UAUGAAUGGUC) can report on the environment of the major groove of an A-form double-stranded nucleic acid. The psi N1 imino protons of these residues (which are not involved in interstrand Watson-Crick hydrogen bonding) are protected from chemical exchange with the solvent water and thus are observable in the proton NMR spectrum in H2O (1). These protons will exchange readily at increased pH values or upon thermal denaturation of the duplex. The longitudinal (T1) relaxation times of the psi N1 imino protons in 100 mM NaCl or in 10 mM MgCl2 and 100 mM NaCl are approximately two-fold faster than those of the psi N3 imino protons which are involved in Watson-Crick base pairing. With the addition of spermidine, the psi N1 imino protons become readily exchangeable at a temperature some 20 degrees C below the melting temperature of the duplex.  相似文献   

17.
18.
1. The following methods for hydrolysis of methyl-(14)C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH(4) (+) form) at pH6 or 8.9, or on Dowex 50 (H(+) form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O(6)-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose-phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson-Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson-Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly through phosphotriester formation, but this mechanism is not proven.  相似文献   

19.
The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution   总被引:14,自引:0,他引:14  
The structure of the deoxyoligomer d(C-G-C-G-A-A-T-T-T-G-C-G) was determined at 2.5-A resolution by single crystal x-ray diffraction techniques. The final R factor is 18% with the location of 71 water molecules. The oligomer crystallizes in a B-DNA-type conformation, with two strands interacting to form a dodecamer duplex. The double helix consists of four A X T and six G X C Watson-Crick base pairs and two G X T mismatches. The G X T pairs adopt a "wobble" structure with the thymine projecting into the major groove and the guanine into the minor groove. The mispairs are accommodated in the normal double helix by small adjustments in the conformation of the sugar phosphate backbone. A comparison with the isomorphous parent compound containing only Watson-Crick base pairs shows that any changes in the structure induced by the presence of G X T mispairs are highly localized. The global conformation of the duplex is conserved. The G X T mismatch has already been studied by x-ray techniques in A and Z helices where similar results were found. The geometry of the mispair is essentially identical in all structures so far examined, irrespective of the DNA conformation. The hydration is also similar with solvent molecules bridging the functional groups of the bases via hydrogen bonds. Hydration may be an important factor in stabilizing G X T mismatches. A characteristic of Watson-Crick paired A X T and G X C bases is the pseudo 2-fold symmetry axis in the plane of the base pairs. The G X T wobble base pair is pronouncedly asymmetric. This asymmetry, coupled with the disposition of functional groups in the major and minor grooves, provides a number of features which may contribute to the recognition of the mismatch by repair enzymes.  相似文献   

20.
ABSTRACT

Relative positions of bases to bases in a crystal structure of ribosome were analyzed extensively. It was found that there is no clear relation between bases apart more than 15 Å and, thus, the relative location of bases can be analyzed within 15 Å of the reference bases. As for base pairing, major positioning was found to be due to the Watson-Crick type base pairs. Some other positions corresponding to non-Watson-Crick type base pairs were also found in some extents. As for base–base stacking, it was observed that the bases stacked to adenine base are dispersive. It was found that less non-Watson-Crick base pairs was found close to the protein binding site, suggesting that the protein components have a tendency to bind to the regular stem structures. The database of relative location of bases must be useful for improvement of structural determination and structural modeling systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号