首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Cdc42 and other Rho GTPases are conserved from yeast to humans and are thought to regulate multiple cellular functions by inducing coordinated changes in actin reorganization and by activating signaling pathways leading to specific gene expression. Direct evidence implicating upstream signals and components that regulate Cdc42 activity or for required roles of Cdc42 in activation of downstream protein kinase signaling cascades is minimal, however. Also, whereas genetic analyses have shown that Cdc42 is essential for cell viability in yeast, its potential roles in the growth and development of mammalian cells have not been directly assessed. RESULTS: To elucidate potential functions of Cdc42 mammalian cells, we used gene-targeted mutation to inactivate Cdc42 in mouse embryonic stem (ES) cells and in the mouse germline. Surprisingly, Cdc42-deficient ES cells exhibited normal proliferation and phosphorylation of mitogen- and stress-activated protein kinases. Yet Cdc42 deficiency caused very early embryonic lethality in mice and led to aberrant actin cytoskeletal organization in ES cells. Moreover, extracts from Cdc42-deficient cells failed to support phosphatidylinositol 4,5-bisphosphate (PIP(2))-induced actin polymerization. CONCLUSIONS: Our studies clearly demonstrate that Cdc42 mediates PIP(2)-induced actin assembly, and document a critical and unique role for Cdc42 in this process. Moreover, we conclude that, unexpectedly, Cdc42 is not necessary for viability or proliferation of mammalian early embryonic cells. Cdc42 is, however, absolutely required for early mammalian development.  相似文献   

2.
The myelin-associated glycoprotein (MAG) is a transmembrane cell adhesion molecule participating in myelin formation and maintenance. Calcium-activated/-dependent proteolysis of myelin-associated glycoprotein by calpain and cathepsin L-like activities has already been detected in purified myelin fractions, producing a soluble fragment, called degraded (d)MAG, characterized by the loss of the transmembrane and cytoplasmic domains. Here, we demonstrate and analyze dMAG formation from pure human brain myelin-associated glycoprotein. The activity never exhibited the high rate previously reported in human myelin fractions. Degradation is time-, temperature-, buffer- and structure-dependent, is inhibited at 4 degrees C and by denaturation of the sample, and is mediated by a trans-acting factor. There is no strict pH dependency of the proteolysis. Degradation was inhibited by excess aprotinin, but not by 1-10 micro g/mL aprotinin and was not eliminated by the use of an aprotinin-sepharose matrix during the purification. dMAG formation was not enhanced by calcium, nor inhibited by a wide variety of protease inhibitors, including specific calpain and cathepsin L inhibitors. Therefore, while cysteine proteases may be present in human myelin membrane fractions, they are not involved in dMAG formation from highly purified human brain myelin-associated glycoprotein preparations.  相似文献   

3.
Protease-activated receptor 1 (PAR1) is an unusual GPCR that interacts with multiple G protein subfamilies (G(q/11), G(i/o), and G(12/13)) and their linked signaling pathways to regulate a broad range of pathophysiological processes. However, the molecular mechanisms whereby PAR1 interacts with multiple G proteins are not well understood. Whether PAR1 interacts with various G proteins at the same, different, or overlapping binding sites is not known. Here we investigated the functional and specific binding interactions between PAR1 and representative members of the G(q/11), G(i/o), and G(12/13) subfamilies. We report that G(q/11) physically and functionally interacts with specific amino acids within the second intracellular (i2) loop of PAR1. We identified five amino acids within the PAR1 i2 loop that, when mutated individually, each markedly reduced PAR1 activation of linked inositol phosphate formation in transfected COS-7 cells (functional PAR1-null cells). Among these mutations, only R205A completely abolished direct G(q/11) binding to PAR1 and also PAR1-directed inositol phosphate and calcium mobilization in COS-7 cells and PAR1-/- primary astrocytes. In stark contrast, none of the PAR1 i2 loop mutations disrupted direct PAR1 binding to either G(o) or G(12), or their functional coupling to linked pertussis toxin-sensitive ERK phosphorylation and C3 toxin-sensitive Rho activation, respectively. In astrocytes, our findings suggest that PAR1-directed calcium signaling involves a newly appreciated G(q/11)-PLCε pathway. In summary, we have identified key molecular determinants for PAR1 interactions with G(q/11), and our findings support a model where G(q/11), G(i/o) or G(12/13) each bind to distinct sites within the cytoplasmic regions of PAR1.  相似文献   

4.
The globular domain in the NH(2)-terminal propeptide (N-propeptide) of the proalpha1(I) chain is largely encoded by exon 2 of the Col1a1 gene and has been implicated in a number of processes that are involved in the biogenesis, maturation, and function of type I collagen. These include intracellular chain association, transcellular transport and secretion, proteolytic processing of the precursor, feedback regulation of synthesis, and control of fibrillogenesis. However, none of these proposed functions has been firmly established. To evaluate the function of this procollagen domain we have used a targeted mutagenesis approach to generate mice that lack exon 2 in the Col1a1 gene. Mouse lines were established on both a mixed 129 OlaHsd/Sv and C57BL/6 background and a pure 129 OlaHsd/Sv background. Adult mice on the mixed background are normal in appearance and are fertile. To the extent that they have been studied, procollagen synthesis, secretion, and proteolytic processing are normal in these mice, and collagen fibrillogenesis is only slightly altered. However, breeding of heterozygous mutant mice on the 129 background generated homozygous mutants at only 64% of the expected frequency. These findings suggest that although the N-propeptide is not essential for collagen biogenesis in mice it may play some essential role during embryonic development.  相似文献   

5.
In earlier studies, we found that permeabilization of mammalian cells with nsPEF was accompanied by prolonged inhibition of voltage-gated (VG) currents through the plasma membrane. This study explored if the inhibition of VG Na(+) current (I(Na)) resulted from (i) reduction of the transmembrane Na(+) gradient due to its influx via nsPEF-opened pores, and/or (ii) downregulation of the VG channels by a Ca(2+)-dependent mechanism. We found that a single 300 ns electric pulse at 1.6-5.3 kV/cm triggered sustained Na(+) influx in exposed NG108 cells and in primary chromaffin cells, as detected by increased fluorescence of a Sodium Green Dye. In the whole-cell patch clamp configuration, this influx was efficiently buffered by the pipette solution so that the increase in the intracellular concentration of Na(+) ([Na](i)) did not exceed 2-3 mM. [Na](i) increased uniformly over the cell volume and showed no additional peaks immediately below the plasma membrane. Concurrently, nsPEF reduced VG I(Na) by 30-60% (at 4 and 5.3 kV/cm). In control experiments, even a greater increase of the pipette [Na(+)] (by 5 mM) did not attenuate VG I(Na), thereby indicating that the nsPEF-induced Na(+) influx was not the cause of VG I(Na) inhibition. Similarly, adding 20 mM of a fast Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the pipette solution did not prevent or attenuate the inhibition of the VG I(Na) by nsPEF. These findings point to possible Ca(2+)-independent downregulation of the VG Na(+) channels (e.g., caused by alteration of the lipid bilayer) or the direct effect of nsPEF on the channel.  相似文献   

6.
Bone morphogenetic protein 1 (BMP-1), which is a tolloid member of the astacin-like family of zinc metalloproteinases, is a highly effective procollagen C-proteinase (PCP) and chordinase. On the other hand, mammalian tolloid like-2 (mTLL-2) does not cleave chordin or procollagen; procollagen is cleaved by mTLL-2 in the presence of high levels of procollagen C-proteinase enhancer-1 (PCPE-1), for reasons that are unknown. We used these differences in activity between BMP-1 and mTLL-2 to narrow in on the domains in BMP-1 that specify PCP and chordinase activity. Using a domain swap approach, we showed that: 1) the metalloproteinase and CUB2 domains of BMP-1 are absolutely required for PCP activity; swaps with either of the corresponding domains in BMP-1 and mTLL-2 did not result in procollagen cleavage and 2) the proteinase domain of mTLL-2 can cleave chordin if coupled to the CUB1 domain of BMP-1. Therefore, the minimal structure for chordinase activity comprises a metalloproteinase domain (either from BMP-1 or from mTLL-2) and the CUB1 domain of BMP-1 (the CUB1 domain of mTLL-2 cannot substitute for the CUB1 domain of BMP-1). We showed that the minimal procollagen C-proteinase (BMP-1 lacking the EGF and CUB3 domain) was enhanced by PCPE-1 but not as well as BMP-1 retaining the CUB3 domain. Further studies showed that PCPE-1 had no effect on the ability of BMP-1 to cleave chordin. The data support a previously suggested mechanism of PCPE-1 whereby PCPE-1 interacts with procollagen, but in addition, the CUB3 domain of BMP-1 appears to augment the interaction.  相似文献   

7.
Cheng G  Yang K  He B 《Journal of virology》2003,77(18):10154-10161
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) functions to block the shutoff of protein synthesis involving double-stranded RNA-dependent protein kinase (PKR). In this process, the gamma(1)34.5 protein recruits cellular protein phosphatase 1 (PP1) to form a high-molecular-weight complex that dephosphorylates eIF-2alpha. Here we show that the gamma(1)34.5 protein is capable of mediating eIF-2alpha dephosphorylation without any other viral proteins. While deletion of amino acids 1 to 52 from the gamma(1)34.5 protein has no effect on eIF-2alpha dephosphorylation, further truncations up to amino acid 146 dramatically reduce the activity of the gamma(1)34.5 protein. An additional truncation up to amino acid 188 is deleterious, indicating that the carboxyl-terminal domain alone is not functional. Like wild-type HSV-1, the gamma(1)34.5 mutant with a truncation of amino acids 1 to 52 is resistant to interferon, and resistance to interferon is coupled to eIF-2alpha dephosphorylation. Intriguingly, this mutant exhibits a similar growth defect seen for the gamma(1)34.5 null mutant in infected cells. Restoration of the wild-type gamma(1)34.5 gene in the recombinant completely reverses the phenotype. These results indicate that eIF-2alpha dephosphorylation mediated by the gamma(1)34.5 protein is required for HSV response to interferon but is not sufficient for viral replication. Additional functions or activities of the gamma(1)34.5 protein contribute to efficient viral infection.  相似文献   

8.
Our previous study reported that mouse BNIP‐21 (mBNIP‐21) induces apoptosis through a mitochondria‐dependent pathway. To map the functional domains of mBNIP‐21, we performed mutational analyses and demonstrated that the BNIP‐2 and Cdc42GAP homology (BCH) domain is required for apoptosis induction by mBNIP‐21 targeting the mitochondria and inducing cytochrome c release. This pro‐apoptotic activity was enhanced by coxsackievirus infection. However, deletion of the Bcl‐2 homology 3 (BH3)‐like domain, a well‐known cell ‘death domain’ in proapoptotic Bcl‐2 family proteins, did not affect the activity of mBNIP‐21. These data were further supported by transfection of a mouse Bax (mBax) mutant, whose BH3 was replaced by the mBNIP‐21 BH3‐like domain. This replacement significantly reduced the pro‐apoptotic activity of mBax. We also found that the predicted calcium binding domain has no contribution to the mBNIP‐21‐induced apoptosis. Further mapping of the motifs of BCH domain demonstrated that deletion of the hydrophobic motif proximal to the C‐terminal of the BCH significantly reduced its proapoptotic activity. These findings suggest that mBNIP‐21, as a member of the BNIP subgroup of the Bcl‐2‐related proteins, functions without need of BH3 but its BCH domain is critical for its activity in inducing cell elongation, membrane protrusions and apoptotic cell death.  相似文献   

9.
We examined the ability of 1,25 (OH)(2) vitamin D(3) (Vit D) to stimulate osteoclast-like cell (OCL) formation in cocultures of spleen cells and primary calvarial osteoblasts from wild-type (WT) and IL-1R type 1-deficient (knockout; KO) mice. Vit D dose dependently increased OCL in cocultures containing WT osteoblasts. In contrast, there was a 90% reduction in OCL numbers in cocultures containing KO osteoblasts. In cocultures with either WT or KO osteoblasts, treatment with Vit D increased receptor activator of NF-kappaB ligand mRNA by 17-, 19-, or 3.5-fold, respectively. Vit D decreased osteoprotegerin mRNA to undetectable in all groups. Intracellular IL-1alpha protein increased after Vit D treatment in cocultures containing WT, but not KO osteoblasts. We also examined direct effects of Vit D, IL-1alpha, and their combination on gene expression in primary osteoblasts. In WT cells, Vit D and IL-1 stimulated receptor activator of NF-kappaB ligand mRNA expression by 3- and 4-fold, respectively, and their combination produced a 7-fold increase. Inhibition of osteoprotegerin mRNA in WT cells was partial with either agent alone and greatest with their combination. In KO cells, only Vit D stimulated a response. IL-1 alone increased IL-1alpha protein expression in WT osteoblasts. However, in combination with Vit D, there was a synergistic response (100-fold increase). In KO cultures, there were no effects of IL-1, Vit D, or their combination on IL-1alpha protein. These results demonstrate interactions between IL-1 and Vit D in primary osteoblasts that appear important in both regulation of IL-1alpha production and the ability of Vit D to support osteoclastogenesis.  相似文献   

10.
Netrins are chemotropic guidance cues that attract or repel growing axons during development. DCC (deleted in colorectal cancer), a transmembrane protein that is a receptor for netrin-1, is implicated in mediating both responses. However, the mechanism by which this is achieved remains unclear. Here we report that Rho GTPases are required for embryonic spinal commissural axon outgrowth induced by netrin-1. Using N1E-115 neuroblastoma cells, we found that both Rac1 and Cdc42 activities are required for DCC-induced neurite outgrowth. In contrast, down-regulation of RhoA and its effector Rho kinase stimulates the ability of DCC to induce neurite outgrowth. In Swiss 3T3 fibroblasts, DCC was found to trigger actin reorganization through activation of Rac1 but not Cdc42 or RhoA. We detected that stimulation of DCC receptors with netrin-1 resulted in a 4-fold increase in Rac1 activation. These results implicate the small GTPases Rac1, Cdc42, and RhoA as essential components that participate in signaling the response of axons to netrin-1 during neural development.  相似文献   

11.
Thrombopoietin (TPO) and its receptor (c-Mpl) are the major regulators of megakaryocyte and platelet production and serve a critical and non-redundant role in hematopoietic stem cell (HSC) biology. TPO signals through the Jak-STAT, Ras-Raf-MAPK, and PI3K pathways, and promotes survival, proliferation, and polyploidization in megakaryocytes. The proto-oncogene c-myc also plays an important role in many of these same processes. In this work we studied the regulated expression of c-myc in megakaryocytic cell lines and primary cells by quantitative real-time RT-PCR. We found that TPO induced expression of c-myc in 1 h in both hematopoietic cell lines (UT-7 and BaF3/Mpl) and mature murine megakaryocytes. The TPO-induced expression of c-myc was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor, suggesting that TPO stimulated c-myc expression through a PI3K-dependent pathway. Of interest, our study showed that overexpression of active Akt did not rescue the effect of PI3K blockade on c-myc expression, rather, enhanced it. In addition, inhibitors of protein kinase C (PKC)zeta and the target of rapamycin (mTOR) also failed to affect c-myc mRNA expression, while c-myc mRNA expression was reduced by inhibition of the mitogen activated protein kinase (MAPK) pathway. Therefore, we conclude that TPO stimulates c-myc expression in primary megakaryocytes through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR.  相似文献   

12.
Stretch-induced expression of vascular endothelial growth factor (VEGF) is thought to be important in mediating the exacerbation of diabetic retinopathy by systemic hypertension. However, the mechanisms underlying stretch-induced VEGF expression are not fully understood. We present novel findings demonstrating that stretch-induced VEGF expression in retinal capillary pericytes is mediated by phosphatidylinositol (PI) 3-kinase and protein kinase C (PKC)-zeta but is not mediated by ERK1/2, classical/novel isoforms of PKC, Akt, or Ras despite their activation by stretch. Cardiac profile cyclic stretch at 60 cpm increased VEGF mRNA expression in a time- and magnitude-dependent manner without altering mRNA stability. Stretch increased ERK1/2 phosphorylation, PI 3-kinase activity, Akt phosphorylation, and PKC-zeta activity. Signaling pathways were explored using inhibitors of PKC, MEK1/2, and PI 3-kinase; adenovirus-mediated overexpression of ERK, PKC-alpha, PKC-delta, PKC-zeta, and Akt; and dominant negative (DN) mutants of ERK, PKC-zeta, Ras, PI 3-kinase and Akt. Although stretch activated ERK1/2 through a Ras- and PKC classical/novel isoform-dependent pathway, these pathways were not responsible for stretch-induced VEGF expression. Overexpression of DN ERK and Ras had no effect on VEGF expression in these cells. In contrast, DN PI 3-kinase as well as pharmacologic inhibitors of PI 3-kinase blocked stretch-induced VEGF expression. Although stretch-induced PI 3-kinase activation increased both Akt phosphorylation and activity of PKC-zeta, VEGF expression was dependent on PKC-zeta but not Akt. In addition, PKC-zeta did not mediate stretch-induced ERK1/2 activation. These results suggest that stretch-induced expression of VEGF involves a novel mechanism dependent upon PI 3-kinase-mediated activation of PKC-zeta that is independent of stretch-induced activation of ERK1/2, classical/novel PKC isoforms, Ras, or Akt. This mechanism may play a role in the well documented association of concomitant hypertension with clinical exacerbation of neovascularization and vascular permeability.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号