首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of insulin by tri-n-butylphosphine followed by air oxidation in dilute solution at pH 9.1 yields A- and B-chain disulfides. A(S-S)2 and B(S-S) have been purified on SP-Sephadex C-25 using a linear gradient of sodium chloride from 0.1 to 0.45 M in 0.5 M acetic acid containing 7 M urea. The overall yield of A(S-S)2 was 70%; and B(S-S), 60%. The A(S-S)2 and B(S-S) had the expected amino acid composition and N-terminal amino acid. The kinetics of reduction and reoxidation of insulin disulfide bonds are discussed.  相似文献   

2.
The synthetic Des-1-glycine-A-chain of sheep insulin as the monomeric cyclic bisdisulfide and native bovine B-chain bissulfonate were reduced together with mercaptoethanol. They combined at pH 10.6 to yield Des-A1-glycine-insulin. This was purified by gel and ion exchange chromatography. The low insulin activity (0.4 - 0.6%) as measured by the fat cell test as well as the change in the CD spectrum indicated that the loss of the N-terminal glycine of the A-chain results in fully inactive insulin. This confirms the results obtained earlier by partial synthesis of Des-A1-glycine-insulin.  相似文献   

3.
Reaction of bis-[2-(succinimidooxycarbonyloxy)ethyl]sulfone [SO2(Eoc-ONSu)2] with insulin in 1N NaHCO3/dimethylformamide forms NalphaA1,NepsilonA1,NepsilonB29-2,2'-sulfonylbis(ethoxycarbonyl)insulin [SO2(Eoc)2-insulin] in 20 - 35% yield. The product can be purified by partition chromatography. After cleavage of the disulfide bridges, reoxidation in very dilute solution reconstitutes about 60% of the original insulin activity. Cleavage of the crosslinking moiety can be achieved with 0.5N NaOH at 0 degrees C in only a few seconds, rendering a biologically fully active insulin.  相似文献   

4.
It has been shown previously [Tang, Wang & Tsou (1988) Biochem. J. 255, 451-455] that, under appropriate conditions, native insulin can be obtained from scrambled insulin or the S-sulphonates of the chains with a yield of 25-30%, together with reaction products containing the separated A and B chains. The native hormone is by far the predominant product among the isomers containing both chains. It is now shown that the presence of added C peptide has no appreciable effect on the yield of native insulin. At higher temperatures the content of the native hormone decreases whereas those of the separated chains increase, and in no case was scrambled insulin containing both chains the predominant product in the absence of denaturants. Both the scrambling and the unscrambling reactions give similar h.p.l.c. profiles for the products. Under similar conditions cross-linked insulin with native disulphide linkages can be obtained from the scrambled molecule or from the S-sulphonate derivative with yields of 50% and 75% respectively at 4 degrees C, and with a dilute solution of the hexa-S-sulphonate yields better than 90% can be obtained. The regenerated product is shown to have the native disulphide bridges by treatment with CNBr to give insulin and by the identity of the h.p.l.c. profile of its peptic hydrolysate with that for cross-linked insulin. It appears that the insulin A and B chains contain sufficient information for the formation of the native molecule and that the role of the connecting C peptide is to bring and to keep the two chains together.  相似文献   

5.
[O-(2-Nitro-4-trimethylammoniophenyl)-TyrA 14]insulin (bovine) is a product formed on reaction of bovine insulin with the hydrophilic reagent 1-fluoro-2-nitro-4-trimethyl-ammoniobenzene iodide (TAN-F) in an aqueous buffer at pH 8.00. The derivative was isolated and its purity established by standard procedures. The identity of the derivative was determined by degrative studies with alpha-chymotrypsin. The addition of zinc to the above reaction decreases the yield of the title derivative, but increases the yield of the [N alpha-TAN-GlyA1] derivative. [N alpha-Boc-GlyA1]insulin was also reacted with the above mentioned reagent in an attempt to improve the yield of the A14-tyrosine derivative. The biological activity of this microcrystalline derivative was found to be 12.4 units/mg as measured by the mouse convulsion assay.  相似文献   

6.
B Adams  A T Smith  S Bailey  A G McEwan  R C Bray 《Biochemistry》1999,38(26):8501-8511
Improved assays for the molybdenum enzyme dimethylsulfoxide reductase (DMSOR) with dimethyl sulfoxide (DMSO) and with dimethyl sulfide (DMS) as substrates are described. Maximum activity was observed at pH 6.5 and below and at 8.3, respectively. Rapid-scan stopped-flow spectrophotometry has been used to investigate the reduction of the enzyme by DMS to a species previously characterized by its UV-visible spectrum [McAlpine, A. S., McEwan, A. G., and Bailey, S. (1998) J. Mol. Biol. 275, 613-623], and its subsequent reoxidation by DMSO. Both these two-electron reactions were faster than enzyme turnover under steady-state conditions, indicating that one-electron reactions with artificial dyes were rate-limiting. Second-order rate constants for the two-electron reduction and reoxidation reactions at pH 5.5 were (1.9 +/- 0.1) x 10(5) and (4.3 +/- 0.3) x 10(2) M-1 s-1, respectively, while at pH 8.0, the catalytic step was rate-limiting (62 s-1). Kinetically, for the two-electron reactions, the enzyme is more effective in DMS oxidation than in DMSO reduction. Reduction of DMSOR by DMS was incomplete below approximately 1 mM DMS but complete at higher concentrations, implying that the enzyme's redox potential is slightly higher than that of the DMS-DMSO couple. In contrast, reoxidation of the DMS-reduced state by DMSO was always incomplete, regardless of the DMSO concentration. Evidence for the existence of a spectroscopically indistinguishable reduced state, which could not be reoxidized by DMSO, was obtained. Brief reaction (less than approximately 15 min) of DMS with DMSOR was fully reversible on removal of the DMS. However, in the presence of excess DMS, a further slow reaction occurred aerobically, but not anaerobically, to yield a stable enzyme form having a lambdamax at 660 mn. This state (DMSORmod) retained full activity in steady-state assays with DMSO, but was inactive toward DMS. It could however be reconverted to the original resting state by reduction with methyl viologen radical and reoxidation with DMSO. We suggest that in this enzyme form two of the dithiolene ligands of the molybdenum have dissociated and formed a disulfide. The implications of this new species are discussed in relation both to conflicting published information for DMSOR from X-ray crystallography and to previous spectroscopic data for its reduced forms.  相似文献   

7.
Insulin receptor was purified 10,000-fold from cultured mouse 3T3-L1 adipocytes in 35% overall yield. The specific activities of 125I-insulin binding and autophosphorylation increased in parallel, following the initial Triton X-100 extraction of membranes. The isolation protocol, performed entirely at pH 8.45, entailed adsorption by avidin-Sepharose CL-4B of a complex formed between Triton X-100-solubilized insulin receptor and N alpha B1-(biotinyl-epsilon-aminocaproyl)insulin, and the specific elution of the complex with biotin. The avidin-Sepharose CL-4B was a partially denatured preparation, showing estimated dissociation constants of 0.2 microM for biotin and approximately 1 microM for the bifunctional ligand at, pH 7, 4 degrees C. The bifunctional ligand was characterized by 70% competency in binding to avidin, 100% competency in binding to solubilized insulin receptor, full stimulation of autophosphorylation of the isolated receptor, and maximal stimulation of hexose uptake by intact 3T3-L1 adipocytes. The insulin binding properties of the insulin receptor were uniform throughout this purification procedure. At pH 8.45, 4 degrees C, an average Kd = 0.72 nM was determined for a single class of noninteracting insulin binding sites. The apparent autophosphorylation of the beta-subunit was also unchanged following affinity chromatography. A single oligomeric structure was established for the purified receptor, composed only of 135,000- and 95,000-Da subunits, whose association was lost by denaturation in the presence of reducing agent. This single structure occurred in the initial Triton X-100 extract. The purified insulin receptor was capable of autophosphorylating the beta-subunit and catalyzed phosphorylation of protein substrates.  相似文献   

8.
Five new expression vectors for recombinant human insulin production (pPT-B5Kpi, pPT-T10Rpi, pPT-T13Rpi, pPT-H27Rpi, pPT-B5Rpi), which have different sizes and leader peptide structure, were constructed and compared based on their expression level, yields of S-sulfonated preproinsulin (SSPPI) and folded proinsulin and enzymatic conversion rate. The ranking of expression level of the five fused proinsulins was H27R ? T10R > B5K > T13R ≈ B5R. In particular, the expression level of H27R was more than double (60-70%) the level of the other fused proinsulins, and this high expression level led to large amounts of SSPPI, folded proinsulin and insulin. Changes to the leader peptide structure affected not only protein expression level, but also refolding yield because the leader peptide affects protein conformation and hydrophobicity. The refolding yield of H27R was 85% at 500 L pilot scale. This high refolding yield was caused by the hydrophilic character of H27R. However, the β-mercaptoethanol concentration needed for refolding and the pH required to precipitate impurities after refolding had to be changed for high refolding yield. To avoid using CNBr, which is used to cleave fusion proteins, we used lysine and arginine linkers to connect the fusion protein and proinsulin. This fusion protein could be simultaneously cleaved by trypsin during enzymatic conversion to eliminate the C-peptide. The length and kind of leader peptide did not affect the enzyme reaction rate. Only the leader peptide linker connecting the B-chain influenced enzyme reaction rate. By testing several leader peptides, we constructed a new strain with 30% increased productivity based on expression level, refolding yield and enzyme reaction.  相似文献   

9.
The kinetics of insulin binding and kinase activity of soluble, partially purified insulin receptors from human skeletal muscle are considered. An equilibrium for insulin binding was obtained within 2 h at 37 degrees C. At lower temperatures the equilibrium for insulin binding was less clearly defined. Dissociation of 125I-labelled insulin was incomplete unless an excess amount of unlabelled insulin was added. Insulin-stimulatable autophosphorylation of the 95 kDa subunit was verified by gel electrophoresis. The kinase activity was measured with the synthetic polypeptide poly(Glu-Tyr(4:1] as a phosphoacceptor. The insulin receptor kinase activity correlated significantly (r = 0.92, P less than 0.0001) to the concentration of high-affinity insulin binding sites in the eluate. Autophosphorylation of the insulin receptor was necessary for the activation of the receptor kinase. When activated the receptor kinase activity was stable for at least 60 min at 21 degrees C with a pH optimum of approx. 7.8, similar to the pH optimum for insulin binding. The non-ionic detergent Triton X-100 inhibited the sensitivity of the receptor kinase to insulin. Insulin stimulated the Vmax of the kinase reaction about 3-fold, decreased the Km for ATP from 35 +/- 5 microM (mean +/- S.E.) to 8 +/- 1 microM (P less than 0.02) and induced a positive cooperativity to ATP with an increase in the Hill coefficient from 1.00 +/- 0.02 to 1.37 +/- 0.07 (P less than 0.05). According to the Hill plots, insulin itself showed no cooperativity with respect to receptor binding or kinase activation.  相似文献   

10.
Glucose-induced insulin secretion by the perfused sodium pentobarbital-anesthetized-rat pancreases was studied under different extracellular pH ranging from 7.4 to 7.8. Under our experimental conditions the amount of insulin released was inversely correlated to the pH increase. Besides, metabolic (CO2H- excess) or gaseous (low pCO2) type of alkalosis, were equally effective inhibiting insulin secretion. During a 16.6 mM glucose stimulus, sequential modifications of extracellular pH (7.4-7.8-7.4) caused a dramatic decrease in insulin secretion during alkalosis and an enhancement of its release during the second 7.4 period. The installment and remotion of the inhibition followed almost immediately the changes in the pH of the perfusates. These findings indicate that extracellular diminution of H+ concentration produces a gradual and quickly reversible decrease upon glucose-induced insulin secretion. These characteristics suggest that the inhibitory effect may be mediated through changes in intracellular and/or transmembrane ion fluxes coupled to the variations in H+ concentration.  相似文献   

11.
A modified procedure for the preparation of the S-sulfonates of the A- and B-chains of insulin and their conversion to the sulfhydryl forms by tri-n-butylphosphine is described. Air oxidation of the sulfhydryl forms of the A-chain in dilute solution (0.2 mg/ml) either in the presence or absence of urea at pH 9.0 yields primarily monomeric, intrachain disulfides. Similar treatment of the reduced B-chain yield monomeric, intrachain disulfide in 7 M urea but a large number of oligomeric, interchain disulfides in the absence of urea. Electrolytic reduction of insulin in 7 M urea of pH 8.5, followed by oxidation of the sulfhydryls in dilute solution in 7 M urea at pH 9.0 yields primarily a mixture of the monomeric, intrachain disulfides of the A-chain and of the B-chain which can be separated by chromatography on Sp-Sephadex in acidic urea. The rate of the oxidation of the sulfhydryls of the two separate chains was much slower and less complete than that reported for the two chains crosslinked by the carbonylbismethionyl residue.  相似文献   

12.
Turkey erythrocytes possess insulin receptors with binding properties very similar to those of mammalian insulin receptors. In the present study, the insulin receptor of the avian erythrocyte has been solubilized in Triton X-100, extensively characterized and partially purified, and its properties compared to those of the membrane-bound receptor.The solubilized insulin receptor has a Stokes radius of 70 Å and an apparent molecular weight of 300 000 in 0.05% Triton. The binding of insulin to the soluble receptor was very similar to the binding observed with the membrane-bound receptor. Thus, binding was markedly temperature dependent for both the soluble and membrane-bound forms, although the kinetics of binding were slower with the soluble receptor. Both forms of the receptor also showed a sharp pH optimum; however, solubilization produced a shift from maximal binding at pH 7.8 to pH 7.3. The soluble receptor also retained insulin analog specificity, ion sensitivity and negative cooperativity. The soluble receptor did not appear to degrade either bound or free insulin.On DEAE-cellulose chromatography the receptor eluted as a single peak. The specific activity of this partially purified preparation was 25–30 pmol/mg protein (about 500-fold enrichment over crude extract and 5-fold over highly purified membranes). Extensive attempts to purify further the receptor by gel filtration, carboxymethyl-cellulose chromatography and affinity chromatography resulted in either a very low yield or only modest enrichment. Purification was also complicated because the receptor was easily denatured; about 40% of the activity was lost after a 90-min exposure to 3 M urea or pH 4.5.  相似文献   

13.
Experimental conditions for the preparation of [LeuB30] insulin by coupling of des-AlaB30 insulin with Leu-OBu(t) were determined using Achromobacter protease I and trypsin as catalysts. Successful coupling required a large excess of the amine component (0.8 M), a high concentration of organic cosolvent (35-50%) and neutral pH of the reaction mixture. The coupling yield of Achromobacter protease I after 24 h at 37 degrees C was almost the same or a little higher than that at 25 degrees C. With trypsin, the coupling yield at 37 degrees C after 24 h was considerably lower than at 25 degrees C. This was partly ascribed to the difference in concentration of organic cosolvent at 37 degrees C and 25 degrees C; 35% and 50%, respectively, or possibly of enzyme stability at these temperatures. The maximum product yield was about 90% with both enzymes under optimal conditions. A preparative scale experiment was performed with Achromobacter protease I; the yield of [LeuB30] insulin was 51% using porcine insulin as the starting material. This semisynthetic insulin was identified by HPLC and amino acid analysis. No difference was observed in CD spectra between [LeuB30] insulin and human insulin.  相似文献   

14.
Carbon-13 (13C) nuclear magnetic resonance spectroscopy (NMR) is performed to characterize the formation of carbamino adducts between insulin and (13C) carbon dioxide over a range of pH values in the presence of a physiological concentration (23 mM) of sodium bicarbonate. The peaks from two of the carbamino adducts resonate at higher frequencies than the signal from bicarbonate, at 164.6 and 165.3 ppm, and are attributed to the adducts with the terminal amino groups of phenylalanine B1 and glycine A1. The intensities of these signals vary with the pH, with unique patterns. Over 6% of each terminal amino group exists as the carbamino adduct at the optimum pH values of 7.8 and 8.3. A unique third adduct resonates at 159.3 ppm, and is attributed to lysine B29. This adduct is present on 2% of the insulin molecules at pH 8.2, but has minimal intensity at pH 7.4. No signals from adducts are detected below pH 6.2, where the amino groups exist predominantly in the protonated form. Creation of the adducts is rapid and they are stable for over 4 wk at 37 degrees C. The narrow bandwidth of the resonance of the adduct (4.0-4.5 Hz) relative to the irreversible cyanate adduct is consistent with molecular forms of the carbamino adduct smaller than the 2-Zn-hexamer which is the preponderate form of clinically utilized U-100 insulin (i.e., 100 U/ml).  相似文献   

15.
Des-Gly-A-chain-tetra-S-sulphonate was prepared by Edman degradation following two different routes. A) Via complete reaction of A-chain from bovine insulin with 150 equivalents of phenylisothiocyanate in pyridine/water and trifluoroacetic acid cleavage of the resulting phenylthiocarbamoyl A-chain. B) Via reaction of bovine insulin with about 20 equivalents of phenylisothiocyanate until a substitution degree of 2.3-2.5 was reached, trifluoroacetic acid cleavage of the crude derivatives and oxidative sulphitolysis of the resulting desaminoacyl insulins. Preparative electrophoresis (pH 2) or ion exchange chromatography using DEAE-Sephadex gave des-Gly-A-chain in a yield of 60-65% of theory according to method B, containing less than 1% of glycine. Des-GlyA1-insulin was prepared by combination with 0.67 equivalents of B-chain-bis-S-sulphonate and isolated in yields of 5-13%, based on B-chain, after gel filtration (pH 8) and ion exchange chromatography (CM-cellulose, pH 3-2). The electrophoretically (pH 2 and 8.6) homogeneous analogue did not crystallize in the presence of zinc ions. Its blood sugar lowering potency is 10-25%, its in vitro insulin activity (fat cell assay) only 1-2%. The immunoreactivity against anti-insulin sera in different test systems is markedly reduced. There are clear differences between the CD-spectra of des-Gly-insulin and insulin, indicating a loss of ordered secondary structure. From the results it is concluded that structure-stabilizing non covalent bonds are abolished by the removal of the invariant A1-glycine. This leads to conformational alterations which cause the far-going inactivation of the molecule.  相似文献   

16.
The chemical properties of the three amino groups of insulin were obtained at 10 and 37 degrees C using the competitive labelling technique with acetic anhydride as the labelling reagent. At 10 degrees C, pK values of 7.9, 7.2, and 7.8 were found for the glycyl A1, phenylalanyl B1, and lysyl B29 amino groups. When compared with standard amino compounds by means of a Br?nsted plot, the two amino-termini were found to be 'super-reactive' and the lysyl epsilon-amino group buried. In the presence of carbon dioxide at physiological pH values, all three amino groups became much less reactive indicating that they had reacted to form carbamino derivatives. Above pH 8 the reactivities of the glycyl amino terminus and epsilon-amino group increase sharply indicating that insulin is undergoing a conformational change which is most likely a change in its association state. At 37 degrees C the amino groups do not titrate normally but exhibit sharp increases in reactivity over the physiological pH range with the midpoints in the pH reactivity profiles between pH values of 7.0 and 7.3. This behaviour is interpreted as a rapid disaggregation of insulin to form monomers as a result of the ionization of the amino groups. It is concluded that at physiological pH and temperature all three amino groups are deprotonated.  相似文献   

17.
K B Chiacchia 《Biochemistry》1988,27(13):4894-4902
Elements of the quaternary structure of the native and dithiothreitol- (DTT) reduced rat adipocyte insulin receptor have been elucidated by vectorial probing and subunit cross-linking. The charged reducing agents glutathione and beta-mercaptoethylamine were used to reduce the class I disulfides of the receptor in intact adipocytes, demonstrating the extracellular location of the disulfide directly. This interpretation was confirmed by use of DTT as a reducing agent and the nonpermeant sulfhydryl blocking reagent Thiolyte MQ to prevent the reoxidation of the class I sulfhydryl groups which occurred when they were not blocked. It was found that the above reoxidation of the receptor is dependent on the concentration of insulin in the nanomolar range, not occurring measurably at 4 degrees C in its absence. Cross-linking studies with ethylene glycol bis(succinimidyl succinate) demonstrated that the alpha subunits could not be cross-linked to each other after reduction of the class I disulfides, suggesting that the interaction between the receptor heterodimers may be due primarily to the disulfide bonds.  相似文献   

18.
The bifunctional reagents, oxalyl-(Met-ONp)2 and malonyl-(Met-ONp)2 have been prepared and investigated as reversible cross-linking reagents for insulin and model compounds. The removal of the cross-linking residues was demonstrated by the cyanogen bromide cleavage of oxalyl-(Met-Phe-OMe)2 and malonyl-(Met-Phe-OMe)2. Zinc-insulin reacted with a molar equivalent of oxalyl-(Met-ONp)2 or malonyl-(Met-ONp)2 in presence of excess triethylamine to yield oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin, respectively. In these derivatives the N-terminal phenylalanine (B1 residue) was free. Thus the cross-link was between A1 and B29 residues in insulin. All three disulfide bonds of these insulin derivatives undergo reduction with tributylphosphine to give six sulfhydryls. Air-oxidation of reduced oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin in 0.05 M disodium phosphate, pH 9.5, yielded products which were indistinguishable from oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin respectively, as measured by physicochemical and biological methods. Cyanogen bromide cleavage of reduced and reoxidized malonyl-(Met)2-insulin in 70% formic acid regenerated insulin quantitatively, but only 40% of insulin was determined from similar treatment of oxalyl-(Met)2-insulin. The regenerated insulins exhibited the biological activity of native insulin. These studies strongly suggest that disulfide bonds formed during oxidation of reduced oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin are identical to those found in insulin.  相似文献   

19.
The acetylenic thioester, 2-octynoyl-CoA, inactivates medium chain acyl-CoA dehydrogenase from pig kidney by two distinct pathways depending on the redox state of the FAD prosthetic group. Inactivation of the oxidized dehydrogenase occurs with labeling of an active site glutamate residue and elimination of CoASH. Incubation of the reduced dehydrogenase with 2-octynoyl-CoA rapidly forms a kinetically stable dihydroflavin species which is resistant to reoxidation using trans-2-octenoyl-CoA, molecular oxygen, or electron transferring flavoprotein. The reduced enzyme derivative shows extensive bleaching at 446 nm with shoulders at 320 and 380 nm. Denaturation of the reduced derivative in 80% methanol yields a mixture of products which was characterized by HPLC, by uv/vis, and by radiolabeling experiments. Approximately 20% of the flavin is recovered as oxidized FAD, about 40% is retained covalently attached to the protein, and the remainder is distributed between several species eluting after FAD on reverse-phase HPLC. The spectrum of one of these species ressembles that of a N(5)-C(4a) dihydroflavin adduct. These data suggest that a primary reduced flavin species undergoes various rearrangements during release from the protein. The possibility that the inactive modified enzyme represents a covalent adduct between 2-octynoyl-CoA and reduced flavin is discussed. Analogous experiments using enzyme substituted with 1,5-dihydro-5-deaza-FAD show rapid and quantitative reoxidation of the flavin by 0.5 eq of 2-octynoyl-CoA.  相似文献   

20.
Insulin receptor halves (alpha beta) were obtained upon selective reduction of the holoreceptor (alpha 2 beta 2) and were isolated in concentrated form. Autophosphorylation of concentrated alpha beta receptor halves can be stimulated by insulin an average of 4.0-fold, whereas nonreduced holoreceptor can be stimulated 5.4-fold. If alpha beta half-receptors are immobilized on wheat germ agglutinin-agarose, no insulin-stimulated autophosphorylation is observed, whereas immobilized holoreceptor retains insulin responsiveness. Treatment of alpha beta half-receptors with glutathione in the presence of insulin results in reoxidation to the holoreceptor form (alpha 2 beta 2) with an efficiency of 60-70% as visualized by immunoblotting, thus providing evidence that two alpha beta halves are in close physical proximity. This reoxidation reaction, which is evident prior to autophosphorylation, is rapid and strictly dependent on the presence of insulin, consistent with the hypothesis that insulin promotes the association of two alpha beta halves. Furthermore, the insulin-induced reoxidation reaction and the insulin-induced autophosphorylation show the same dose dependence ED50 3-4 x 10(-8) M insulin), suggesting that the noncovalent association of alpha beta half-receptors upon insulin binding is a prerequisite for insulin-stimulated autophosphorylation in concentrated alpha beta half-receptor preparations. If the alpha beta half-receptor forms are phosphorylated in the presence of an anti-phosphotyrosine antibody and separated from nonphosphorylated alpha beta receptors, we observed that the phosphorylated alpha beta receptor halves contain bound insulin. This excludes the possibility that alpha beta half-receptors that bind insulin, preferentially phosphorylate alpha beta halves that have no insulin bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号