首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The nucleation step of Escherichia coli RecA filament formation on single-stranded DNA (ssDNA) is strongly inhibited by prebound E. coli ssDNA-binding protein (SSB). The capacity of RecA protein to displace SSB is dramatically enhanced in RecA proteins with C-terminal deletions. The displacement of SSB by RecA protein is progressively improved when 6, 13, and 17 C-terminal amino acids are removed from the RecA protein relative to the full-length protein. The C-terminal deletion mutants also more readily displace yeast replication protein A than does the full-length protein. Thus, the RecA protein has an inherent and robust capacity to displace SSB from ssDNA. However, the displacement function is suppressed by the RecA C terminus, providing another example of a RecA activity with C-terminal modulation. RecADeltaC17 also has an enhanced capacity relative to wild-type RecA protein to bind ssDNA containing secondary structure. Added Mg(2+) enhances the ability of wild-type RecA and the RecA C-terminal deletion mutants to compete with SSB and replication protein A. The overall binding of RecADeltaC17 mutant protein to linear ssDNA is increased further by the mutation E38K, previously shown to enhance SSB displacement from ssDNA. The double mutant RecADeltaC17/E38K displaces SSB somewhat better than either individual mutant protein under some conditions and exhibits a higher steady-state level of binding to linear ssDNA under all conditions.  相似文献   

2.
In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.  相似文献   

3.
The RecA protein of Escherichia coli optimally promotes DNA strand exchange reactions in the presence of the single strand DNA-binding protein of E. coli (SSB protein). Under these conditions, assembly of RecA protein onto single-stranded DNA (ssDNA) occurs in three steps. First, the ssDNA is rapidly covered by SSB protein. The binding of RecA protein is then initiated by nucleation of a short tract of RecA protein onto the ssDNA. Finally, cooperative polymerization of additional RecA protein accompanied by displacement of SSB protein results in a ssDNA-RecA protein filament (Griffith, J. D., Harris, L. D., and Register, J. C. (1984) Cold Spring Harbor Symp. Quant. Biol. 49, 553-559). We report here that RecA protein assembly onto circular ssDNA yields RecA protein-covered circles in which greater than 85% are completely covered by RecA protein with no remaining SSB protein-covered segments (as detected by electron microscopy). However, when linear ssDNA is used, 90% of the filaments contain a short segment at one end complexed with SSB protein. This suggests that RecA protein assembly is unidirectional. Visualization of the assembly of RecA protein onto either long ssDNA tails (containing either 5' or 3' termini) or ssDNA gaps generated in double strand DNA allowed us to determine that the RecA protein polymerizes in the 5' to 3' direction on ssDNA and preferentially nucleates at ssDNA-double strand DNA junctions containing 5' termini.  相似文献   

4.
We compared the biochemical properties of the RecA441 protein to those of the wild-type RecA protein in an effort to account for the constitutive protease activity observed in recA441 strains. The two RecA proteins have similar properties in the absence of single-stranded DNA binding protein (SSB protein), and the differences that do exist shed little light on the temperature-inducible phenotype observed in recA441 strains. In contrast, several biochemical differences are apparent when the two proteins are compared in the presence of SSB protein, and these are conducive to a hypothesis that explains the temperature-sensitive behavior observed in these strains. We find that both the single-stranded DNA (ssDNA)-dependent ATPase and LexA-protease activities of RecA441 protein are more resistant to inhibition by SSB protein than are the activities of the wild-type protein. Additionally, the RecA441 protein is more capable of using ssDNA that has been precoated with SSB protein as a substrate for ATPase and protease activities, implying that RecA441 protein is more proficient at displacing SSB protein from ssDNA. The enhanced SSB protein displacement ability of the RecA441 protein is dependent on elevated temperature. These observations are consistent with the hypothesis that the RecA441 protein competes more efficiently with SSB protein for limited ssDNA sites and can be activated to cleave repressors at elevated temperature by displacing SSB protein from the limited ssDNA that occurs naturally in Escherichia coli. Neither the ssDNA binding characteristics of the RecA441 protein nor the rate at which it transfers from one DNA molecule to another provides an explanation for its enhanced activities, leading us to conclude that kinetics of RecA441 protein association with DNA may be responsible for the properties of the RecA441 protein.  相似文献   

5.
The RecA proteins of Escherichia coli (Ec) and Deinococcus radiodurans (Dr) both promote a DNA strand exchange reaction involving two duplex DNAs. The four-strand exchange reaction promoted by the DrRecA protein is similar to that promoted by EcRecA, except that key parts of the reaction are inhibited by Ec single-stranded DNA-binding protein (SSB). In the absence of SSB, the initiation of strand exchange is greatly enhanced by dsDNA-ssDNA junctions at the ends of DNA gaps. This same trend is seen with the EcRecA protein. The results lead to an expansion of published hypotheses for the pathway for RecA-mediated DNA pairing, in which the slow first order step (observed in several studies) involves a structural transition to a state we designate P. The P state is identical to the state found when RecA is bound to double-stranded (ds) DNA. The structural state present when the RecA protein is bound to single-stranded (ss) DNA is designated A. The DNA pairing model in turn facilitates an articulation of three additional conclusions arising from the present work. 1) When a segment of a RecA filament bound to ssDNA is forced into the P state (as RecA bound to the ssDNA immediately adjacent to dsDNA-ssDNA junction), the segment becomes "pairing enhanced." 2) The unusual DNA pairing properties of the D. radiodurans RecA protein can be explained by postulating this protein has a more stringent requirement to initiate DNA strand exchange from the P state. 3) RecA filaments bound to dsDNA (P state) have directly observable structural changes relative to RecA filaments bound to ssDNA (A state), involving the C-terminal domain.  相似文献   

6.
We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional RecA protein to yield presynaptic filaments. Here, electron microscopy has been used to further explore the parameters of this assembly process. The optimal extent of presynaptic filament formation required at least one RecA protein monomer per three nucleotides, high concentrations of ATP (greater than 3 mM in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein assembly.  相似文献   

7.
The RecO and RecR proteins form a complex that promotes the nucleation of RecA protein filaments onto SSB protein-coated single-stranded DNA (ssDNA). However, even when RecO and RecR proteins are provided at optimal concentrations, the loading of RecA protein is surprisingly slow, typically proceeding with a lag of 10 min or more. The rate-limiting step in RecOR-promoted RecA nucleation is the binding of RecOR protein to ssDNA, which is inhibited by SSB protein despite the documented interaction between RecO and SSB. Full activity of RecOR is seen only when RecOR is preincubated with ssDNA prior to the addition of SSB. The slow binding of RecOR to SSB-coated ssDNA involves the C terminus of SSB. When an SSB variant that lacks the C-terminal 8 amino acids is used, the capacity of RecOR to facilitate RecA loading onto the ssDNA is largely abolished. The results are used in an expanded model for RecOR action.  相似文献   

8.
The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins.  相似文献   

9.
Overproduction of single-stranded DNA (ssDNA)-binding protein (SSB) in uvr Escherichia coli mutants results in a wide range of altered phenotypes. (i) Cell survival after UV irradiation is decreased; (ii) expression of the recA-lexA regulon is slightly reduced after UV irradiation, whereas it is increased without irradiation; and (iii) recombination of UV-damaged lambda DNA is inhibited, whereas recombination of nonirradiated DNA is unaffected. These results are consistent with the idea that in UV-damaged bacteria, SSB is first required to allow the formation of short complexes of RecA protein and ssDNA that mediate cleavage of the LexA protein. However, in a second stage, SSB should be displaced from ssDNA to permit the production of longer RecA-ssDNA nucleoprotein filaments that are required for strand pairing and, hence, recombinational repair. Since bacteria overproducing SSB appear identical in physiological respects to recF mutant bacteria, it is suggested that the RecF protein (alone or with other proteins of the RecF pathway) may help RecA protein to release SSB from ssDNA.  相似文献   

10.
Displacement of single-stranded DNA (ssDNA)-binding protein (SSB) from ssDNA is necessary for filament formation of RecA on ssDNA to initiate homologous recombination. The interaction between RecO and SSB is considered to be important for SSB displacement; however, the interaction has not been characterized at the atomic level. In this study, to clarify the mechanism underlying SSB displacement from ssDNA upon RecO binding, we examined the interaction between Thermus thermophilus RecO and cognate SSB by NMR analysis. We found that SSB interacts with the C-terminal positively charged region of RecO. Based on this result, we constructed some RecO mutants. The R127A mutant had considerably decreased binding affinity for SSB and could not anneal SSB-coated ssDNAs. Further, the mutant in the RecOR complex prevented the recovery of ssDNA-dependent ATPase activity of RecA from inhibition by SSB. These results indicated that the region surrounding Arg-127 is the binding site of SSB. We also performed NMR analysis using the C-terminal peptide of SSB and found that the acidic region of SSB is involved in the interaction with RecO, as seen in other protein-SSB interactions. Taken together with the findings of previous studies, we propose a model for SSB displacement from ssDNA where the acidic C-terminal region of SSB weakens the ssDNA binding affinity of SSB when the dynamics of the C-terminal region are suppressed by interactions with other proteins, including RecO.  相似文献   

11.
The ATP-dependent three-strand exchange activity of the Streptococcus pneumoniae RecA protein (RecA(Sp)), like that of the Escherichia coli RecA protein (RecA(Ec)), is strongly stimulated by the single-stranded DNA-binding protein (SSB) from either E. coli (SSB(Ec)) or S. pneumoniae (SSB(Sp)). The RecA(Sp) protein differs from the RecA(Ec) protein, however, in that its ssDNA-dependent ATP hydrolysis activity is completely inhibited by SSB(Ec) or SSB(Sp) protein, apparently because these proteins displace RecA(Sp) protein from ssDNA. These results indicate that in contrast to the mechanism that has been established for the RecA(Ec) protein, SSB protein does not stimulate the RecA(Sp) protein-promoted strand exchange reaction by facilitating the formation of a presynaptic complex between the RecA(Sp) protein and the ssDNA substrate. In addition to acting presynaptically, however, it has been proposed that SSB(Ec) protein also stimulates the RecA(Ec) protein strand exchange reaction postsynaptically, by binding to the displaced single strand that is generated when the ssDNA substrate invades the homologous linear dsDNA. In the RecA(Sp) protein-promoted reaction, the stimulatory effect of SSB protein may be due entirely to this postsynaptic mechanism. The competing displacement of RecA(Sp) protein from the ssDNA substrate by SSB protein, however, appears to limit the efficiency of the strand exchange reaction (especially at high SSB protein concentrations or when SSB protein is added to the ssDNA before RecA(Sp) protein) relative to that observed under the same conditions with the RecA(Ec) protein.  相似文献   

12.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   

13.
According to one prominent model, each protomer in the activated nucleoprotein filament of homologous recombinase RecA possesses two DNA-binding sites. The primary site binds (1) single-stranded DNA (ssDNA) to form presynaptic complex and (2) the newly formed double-stranded (ds) DNA whereas the secondary site binds (1) dsDNA of a partner to initiate strand exchange and (2) the displaced ssDNA following the strand exchange. RecA protein from Pseudomonas aeruginosa (RecAPa) promotes in Escherichia coli hyper-recombination in an SOS-independent manner. Earlier we revealed that RecAPa rapidly displaces E.coli SSB protein (SSB-Ec) from ssDNA to form presynaptic complex. Here we show that this property (1) is based on increased affinity of ssDNA for the RecAPa primary DNA binding site while the affinity for the secondary site remains similar to that for E.coli RecA, (2) is not specific for SSB-Ec but is also observed for SSB protein from P.aeruginosa that, in turn, predicts a possibility of enhanced recombination repair in this pathogenic bacterium.  相似文献   

14.
The Escherichia coli single stranded DNA binding protein (SSB) is crucial for DNA replication, recombination and repair. Within each process, it has two seemingly disparate roles: it stabilizes single‐stranded DNA (ssDNA) intermediates generated during DNA processing and, forms complexes with a group of proteins known as the SSB‐interactome. Key to both roles is the C‐terminal, one‐third of the protein, in particular the intrinsically disordered linker (IDL). Previously, they have shown using a series of linker deletion mutants that the IDL links both ssDNA and target protein binding by mediating interactions with the oligosaccharide/oligonucleotide binding fold in the target. In this study, they examine the role of the linker region in SSB function in a variety of DNA metabolic processes in vitro. Using the same linker mutants, the results show that in addition to association reactions (either DNA or protein), the IDL is critical for the release of SSB from DNA. This release can be under conditions of ssDNA competition or active displacement by a DNA helicase or recombinase. Consistent with their previous work these results indicate that SSB linker mutants are defective for SSB–SSB interactions, and when the IDL is removed a terminal SSB–DNA complex results. Formation of this complex inhibits downstream processing of DNA by helicases such as RecG or PriA as well as recombination, mediated by RecA. A model, based on the evidence herein, is presented to explain how the IDL acts in SSB function.  相似文献   

15.
Single-stranded DNA binding proteins (SSBs) have been isolated from many organisms, including Escherichia coli, Saccharomyces cerevisiae and humans. Characterization of these proteins suggests they are required for DNA replication and are active in homologous recombination. As an initial step towards understanding the role of the eukaryotic SSBs in DNA replication and recombination, we examined the DNA binding and strand exchange stimulation properties of the S. cerevisiae single-strand binding protein y-RPA (yeast replication protein A). y-RPA was found to bind to single-stranded DNA (ssDNA) as a 115,000 M(r) heterotrimer containing 70,000, 36,000 and 14,000 M(r) subunits. It saturated ssDNA at a stoichiometry of one heterotrimer per 90 to 100 nucleotides and binding occurred with high affinity (K omega greater than 10(9) M-1) and co-operativity (omega = 10,000 to 100,000). Electron microscopic analysis revealed that y-RPA binding was highly co-operative and that the ssDNA present in y-RPA-ssDNA complexes was compacted fourfold, arranged into nucleosome-like structures, and was free of secondary structure. y-RPA was also tested for its ability to stimulate the yeast Sepl and E. coli RecA strand-exchange proteins. In an assay that measures the pairing of circular ssDNA with homologous linear duplex DNA, y-RPA stimulated the strand-exchange activity of Sepl approximately threefold and the activity of RecA protein to the same extent as did E. coli SSB. Maximal stimulation of Sepl occurred at a stoichiometry of one y-RPA heterotrimer per 95 nucleotides of ssDNA. y-RPA stimulated RecA and Sepl mediated strand exchange reactions in a manner similar to that observed for the stimulation of RecA by E. coli SSB; in both of these reactions, y-RPA inhibited the aggregation of ssDNA and promoted the co-aggregation of single-stranded and double-stranded linear DNA. These results demonstrate that the E. coli and yeast SSBs display similar DNA-binding properties and support a model in which y-RPA functions as an E. coli SSB-like protein in yeast.  相似文献   

16.
The mutation of Pro67 to Trp (P67W) in the Escherichia coli RecA protein results in reduced recombination and constitutive coprotease phenotypes. We examined the biochemical properties of this mutant in an effort to understand these altered behaviors. We find that RecA P67W protein can access single-stranded DNA (ssDNA) binding sites within regions of secondary structure more effectively than wild-type protein, and binding to duplex DNA is both faster and more extensive as well. This mutant is also more effective than wild-type RecA protein in displacing SSB protein from ssDNA. An enhancement in SSB protein displacement has been shown previously for RecA441, RecA730, and RecA803 proteins, and similarly, this improved ability to displace SSB protein for RecA P67W protein correlates with an increased rate of association with ssDNA. As for the aforementioned mutant RecA proteins, we expect that this enhanced activity will allow RecA P67W protein to bind ssDNA naturally occurring in undamaged cells and to constitutively induce the SOS response. The DNA strand exchange activity of RecA P67W protein is also altered. Although the rate of duplex DNA uptake into joint molecules is increased compared to that of wild-type RecA protein, the resolution to the nicked circular dsDNA product is reduced. We suggest that either a limited amount of DNA strand reinvasion or a defect in DNA heteroduplex extension is responsible for the impaired recombination ability of this mutant protein.  相似文献   

17.
Maor-Shoshani A  Livneh Z 《Biochemistry》2002,41(48):14438-14446
Bypass of replication-blocking lesions in Escherichia coli is carried out by DNA polymerase V (UmuC) in a reaction that requires UmuD', RecA, and single-strand DNA-binding protein (SSB). The activity of this four-component basic bypass system is a low-fidelity and low-processivity activity. Addition of the processivity subunits of pol III, the beta subunit sliding DNA clamp, and the five-subunit gamma complex clamp loader increased the rate of translesion replication approximately 3-fold. This stimulation was specific to the lesion bypass step, with no effect on the initiation of synthesis by pol V. The beta subunit and gamma complex increased the processivity of pol V from 3 to approximately 14-18 nucleotides, providing a mechanistic basis for their stimulatory effect. Stimulation of bypass was observed over a range of RecA and SSB concentrations. ATPgammaS, which strongly inhibits translesion replication by pol V, primarily via inhibition of the initiation stage, caused the same inhibition also in the presence of the processivity proteins. The in vivo role of the processivity proteins in translesion replication was examined by assaying UV mutagenesis. This was done in a strain carrying the dnaN59 allele, encoding a temperature-sensitive beta subunit. When assayed in an excision repair-defective background, the dnaN59 mutant exhibited a level of UV mutagenesis reduced up to 3-fold compared to that of the isogenic dnaN(+) strain. This suggests that like in the in vitro system, the beta subunit stimulates lesion bypass in vivo.  相似文献   

18.
Reddy MS  Vaze MB  Madhusudan K  Muniyappa K 《Biochemistry》2000,39(46):14250-14262
Single-stranded DNA-binding proteins play an important role in homologous pairing and strand exchange promoted by the class of RecA-like proteins. It is presumed that SSB facilitates binding of RecA on to ssDNA by melting secondary structure, but direct physical evidence for the disruption of secondary structure by either SSB or RecA is still lacking. Using a series of oligonucleotides with increasing amounts of secondary structure, we show that stem loop structures impede contiguous binding of RecA and affect the rate of ATP hydrolysis. The electrophoretic mobility shift of a ternary complex of SSB-DNA-RecA and a binary complex of SSB-DNA are similar; however, the mechanism remains obscure. Binding of RecA on to stem loop is rapid in the presence of SSB or ATPgammaS and renders the complex resistant to cleavage by HaeIII, to higher amounts of competitor DNA or low temperature. The elongation of RecA filament in a 5' to 3' direction is halted at the proximal end of the stem. Consequently, RecA nucleates at the loop and cooperative binding propagates the RecA filament down the stem causing its disruption. The pattern of modification of thymine residues in the loop region indicates that RecA monomer is the minimum binding unit. Together, these results suggest that SSB plays a novel role in ensuring the directionality of RecA polymerization across stem loop in ssDNA. These observations have fundamental implications on the role of SSB in multiple aspects of cellular DNA metabolism.  相似文献   

19.
The RecA protein from Escherichia coli promotes an ATP-dependent three-strand exchange reaction between a circular single-stranded DNA (ssDNA) and a homologous linear double-stranded (dsDNA). We have now found that under certain conditions, the RecA protein is also able to promote the three-strand exchange reaction using the structurally related nucleoside triphosphate, ITP, as the nucleotide cofactor. However, although both reactions are stimulated by single-stranded DNA-binding (SSB) protein, the ITP-dependent reaction differs from the ATP-dependent reaction in that it is observed only at low SSB protein concentrations, whereas the ATP-dependent reaction proceeds efficiently even at high SSB protein concentrations. Moreover, the circular ssDNA-dependent ITP hydrolysis activity of the RecA protein is strongly inhibited by SSB protein (suggesting that SSB protein displaces RecA protein from ssDNA when ITP is present), whereas the ATP hydrolysis activity is uninhibited even at high SSB protein concentrations (because RecA protein is resistant to displacement by SSB protein when ATP is present). These results suggest that SSB protein does not stimulate the ITP-dependent strand exchange reaction presynaptically (by facilitating the binding of RecA protein to the circular ssDNA substrate) but may act postsynaptically (by binding to the displaced strand that is generated when the circular ssDNA invades the linear dsDNA substrate). Interestingly, the mechanistic characteristics of the ITP-dependent strand exchange reaction of the E. coli RecA protein are similar to those of the ATP-dependent strand exchange reaction of the RecA protein from Streptococcus pneumoniae. These findings are discussed in terms of the relationship between the dynamic state of the RecA-ssDNA filament and the mechanism of the SSB protein-stimulated three-strand exchange reaction.  相似文献   

20.
It was discovered that the mutant D112R RecA protein is more resistant to the action of its negative regulator, the RecX protein, than wild type protein both in vitro and in vivo. By means of molecular modeling methods, we showed that amino-acid residue at the position 112 cannot approach the RecX closer than 25–28 Å. Thus, direct contact between the amino acid residue and the RecX is not possible. The RecA D112R protein more actively competes with the SSB protein for the binding sites on single-stranded DNA (ssDNA) and, therefore, differs from wild type RecA by the filamentation dynamics on ssDNA. On the other hand, when replacing ATP to dATP, wild type RecA protein, changing the filamentation dynamics on ssDNA, also become more resistant to the RecX. On the basis of these data, a conclusion was drawn that filamentation dynamics is of substantially greater importance in the resistance of the RecA filament to the RecX than previously discussed protein-protein interactions RecA-RecX. We also propose an improved model of the RecA filament regulation by the RecX protein, according to which the RecA filament elongation along ssDNA is blocked by the RecX protein on the region of ssDNA located beyond the filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号