首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ultraviolet (UV) and gamma-induced mutagenesis have been studied using a doubly auxotrophic strain of Salmonella typhimurium carrying the amber leuA150 mutation (which reverts by base-pair substitution) and the frameshift hisC3076 marker (which reverts by compensating frameshifts). In the initially constructed LT2 background, both markers were poorly revertible by UV and essentially non-revertible by gamma-radiation. A derivative of this strain carrying the mutation-enhancing plasmid pKM101 was however readily reverted by both UV and gamma, with either Leu+ (base substitution) or His+ (frameshift) revertants being observed on appropriate selective media. Photoreactivation experiments suggested that the lesions leading to formation of the two types of mutagenic event were similar if not identical. Support for this suggestion was obtained when it was found that yields of both types of UV-induced revertant were significantly increased in an excision-deficient background, while no revertants of either type were found in a recA background. Yields of gamma-induced revertants were not greatly altered in a uvrB background, but were also reduced to zero (for both markers) in the recA background. These results are consistent with what has previously been well-documented for UV and gamma-induced base-pair substitution mutagenesis, and serve to emphasize the similarities between base-pair substitution mutagenesis and frameshift mutagenesis by these agents. There are differences, however, since although UV-induced reversion of the leuA150 marker was little affected and gamma-induced reversion of leuA150 was somewhat reduced in the presence of a polA mutation (polA3), the yields of His+ frameshift revertants were significantly increased in the polA3 background following treatment with either UV or gamma. Thus while inducible DNA repair (SOS repair) appears to be involved in generating both types of mutational event following either UV- or gamma-irradiation, at some stage in the processing of premutational lesions the level (or type) of DNA polymerase I activity in the cell seems to have an important role in determining whether or not frameshifts or base-pair substitutions will be produced at a particular frequency.  相似文献   

3.
UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA+ gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate (K. Overbye and P. Margolin, J. Bacteriol. 146:170-178, 1981; K. Overbye, S. M. Basu, and P. Margolin, Cold Spring Harbor Symp. Quant. Biol. 47:785-791, 1983). Mitomycin C induction of the phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead us to deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability.  相似文献   

4.
29 conjugative resistance and colicin plasmids from 19 different incompatibility (Inc) groups were examined for their ability to enhance post-ultraviolet (UV) survival and UV- and methyl methanesulfonate(MMS)-induced mutability in Salmonella typhimurium LT2 strains. 14 Muc+ plasmids enhanced each of the survival and mutation-related properties tested, while 14 Muc- plasmids showed no enhancing effects in any tests. One Muc+ plasmid, pRG1251 (IncH1), enhanced post-UV survival and each of the mutation-related properties tested, except MMS-induced mutagenesis. Two further noteworthy plasmids, R391 (IncJ) and R394 (IncT), produced apparent strain-dependent effects in S. typhimurium which differed from those reported to have been found in Escherichia coli. Plasmid R391 enhanced post-UV survival in S. typhimurium, in contrast to its UV-sensitizing effects in E. coli. In both hosts plasmid R391 enhanced UV- and MMS-induced mutagenesis. Plasmid R394 had no enhancing effects on UV survival or UV- and MMS-induced mutagenesis in S. typhimurium, in contrast to its reported enhancement of MMS-induced mutagenesis in E. coli. Conjugal transfer of R394 to E. coli strain AB1157 and assays of mutagenesis-related traits supported results observed in S. typhimurium. Muc+ plasmids were found to enhance the frequency of precise excision of the transposon Tn10 when inserted within hisG or trpA in S. typhimurium strains. Precise excision could be further enhanced in S. typhimurium by UV-irradiation. Analysis of Tn10 mutants with altered IS10 ends indicated that intact inverted repeats at the ends of Tn10 were required for efficient enhancement of precise excision.  相似文献   

5.
The effect of R plasmids on spontaneous and radiation (ultraviolet and gamma)-induced mutability in Pseudomonas aeruginosa was studied in strains containing the radiation-sensitive markers polA3 or rec-2 and the revertable auxotrophic markers hisO27 and trpB1. In the absence of an R plasmid, the radiation-induced mutability was dependent on the recA+ genotype and independent of the polA+ genotype, whereas spontaneous mutability was similar in all genetic backgrounds. R plasmids pPL1, R2, and pMG15 increased the ultraviolet radiation survival and ultraviolet-induced mutability of wild-type and polA host cells but did not alter either effect in a recA mutant. These R plasmids also increased the gamma radiation survival and gamma-induced mutability of wild-type host cells bud pMG15 also enhanced the level of spontaneous mutagenesis in wild-type host cells but not in a polA or recA mutant. These data suggested that a common plasmid gene product(s) may participate in various recA-dependent, error-prone deoxyribonucleic acid repair pathways of P. aeruginosa. The properties of a mutant R plasmid, pPL2, originally selected because it lacked enhanced ultraviolet-induced mutability, supported this conclusion.  相似文献   

6.
The presence in recipient strains of Escherichia coli K12 of the plasmid R46 greatly reduced the yield of recombinants from crosses with several Hfr strains and virtually abolished the formation of recombinants by PI transduction without, however, significantly affecting the transfer of the F prime from a strain carrying Fgal. The R46 plasmid had paradoxical effects on mutability: it appeared to enhance the yield of mutants following irradiation with ultraviolet ligh but it reduced the number of mutants detectable in unirradiated cultures. The effects of this plasmid on ultraviolet survival of the wild type and several mutants defective for recombination and repair have been measured and the results, in the main, confirm similar observation by Tweats et al. (1976). Not only is the survival of the strain habouring R46 greater than that of the parent strain in all the cases studied, but the survival of ultraviolet irradiated bacteriophage lambda is also greater.  相似文献   

7.
The amber mutation trpD28 of Salmonella typhimurium shows a complex reversion pattern on anthranilate (AA)-supplemented minimal medium. Under such conditions it is possible to recover revertants of two phenotypes, prototrophs (MM+) and anthranilate utilizers (AA+), each phenotype brought about by several mutational events. Since one class of AA+ revertants is caused by deletion of the trpD28 mutation, this constitutes a useful system for quantitative studies of the effects of mutagenic agents and cellular factors on the production of deletions. In the present study we have tried to assess the relative contribution of chemical mutagens vs. cellular mutator factors in causing this class of mutations. Strains of S. typhimurium in which the spontaneous reversion rate of trpD28 was modified by pKM101, (strain SO1007), mutL (strain SO1018) and both (strain SO1008), as well as the wild type (strain SO939) were treated with nitrous acid (HNO2) and mitomycin C (MC), mutagens reported to induce deletions in bacteria. The results showed that while the absolute frequency of deletions increased exponentially with dose of mutagen in parallel with the total reversion frequency, the relative frequency (percent) of these mutations was characteristic for each strain and for the most part unaffected by the dose of mutagen. It appears that deletions, spontaneous or induced, occur as a fixed percentage of total mutations and are brought about by the cells' own repair capacity and characteristic DNA metabolism. Perhaps these mutations are the result of untargeted events during SOS misrepair.  相似文献   

8.
Multicopy plasmids carrying either the umuDC operon of Escherichia coli or its analog mucAB operon, were introduced into Ames Salmonella strains in order to analyze the influence of UmuDC and MucAB proteins on repair and mutability after UV irradiation. It was found that in uvr+ bacteria, plasmid pICV80:mucAB increased the frequency of UV-induced His+ revertants whereas pSE117:umuDC caused a smaller increase in UV mutagenesis. In delta uvrB bacteria, the protective role of pSE117 against UV killing was weak, and there was a great reduction in the mutant yield. In contrast, in these cells, pICV80 led to a large increase in both cell survival and mutation frequency. These results suggest that in Salmonella, as in E. coli, MucAB proteins mediate UV mutagenesis more efficiently than UmuDC proteins do. Plasmid pICV84:umuD+ C- significantly increased UV mutagenesis of TA2659: delta uvrB cells whereas in them, pICV77:mucA+ B- had no effect on mutability indicating the presence in Salmonella TA2659 of a gene functionally homologous to umuC.  相似文献   

9.
Survivors of nitrosoguanidine-treated cultures of a colicinogenic strain of Salmonella typhimurium were tested for spontaneous production of colicin E1. Of about 1,000 colonies tested, 13 produced no (or very narrow) colicin zones. Four of these isolates proved to be more sensitive to ultraviolet (UV) light, X rays, and methyl methane sulfonate than the parent strain and did not show enhanced production of colicin when treated with mitomycin C (which acts as an inducer on wild-type cells). Further studies showed that these isolates were of two classes. Three mutants were extremely sensitive to UV, failed to show spontaneous release of two temperate phages, and were infertile as recipients in transduction or in an Hfr cross although they accepted an F' factor normally. These independently isolated mutants were inferred to be recombination-deficient; one of them had the additional property of increased spontaneous mutability at two loci. The other colicin-nonreleasing isolate was only moderately sensitive to UV, showed enhanced spontaneous release of two temperate phages, and was of approximately normal fertility as a recipient in transduction or conjugation.  相似文献   

10.
We have introduced a mutD5 mutation (which results in defective 3'-5'-exonuclease activity of the epsilon proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect on UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the epsilon proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

11.
The isolation of different classes of antibiotic-supersensitive outer membrane permeability mutants of Salmonella typhimurium has been described previously (Sukupolvi et al., 1984, Journal of Bacteriology 159, 704-712). One of these, the SS-A mutation, sensitizes the bacteria to gentian violet and to hydrophobic antibiotics. The phenotype of the SS-A mutant was restored to normal when a cloned fragment of the F plasmid, or the R plasmid R6-5, carrying the genes traS, T and D was introduced on a multicopy plasmid. The introduction of a plasmid carrying only the traT gene showed that this gene was sufficient to restore the phenotype. Only clones with functioning traT (irrespective of copy number) restored the normal antibiotic-resistant phenotype in the SS-A mutant. An incompatibility test using a donor strain which carried transposon Tn10 in the 60 MDa plasmid of S. typhimurium and a recipient in which Tn5 was placed close to the SS-A mutation indicated that the SS-A mutation was located in the 60 MDa virulence plasmid (previously called the cryptic plasmid) of S. typhimurium. The introduction of the large virulence plasmid carrying the SS-A mutant allele into wild-type S. typhimurium or Escherichia coli resulted in strains with a phenotype identical to that of the original SS-A mutant.  相似文献   

12.
Phage X: a plasmid-dependent, broad host range, filamentous bacterial virus   总被引:2,自引:0,他引:2  
Phage X was isolated from sewage as plating on Escherichia coli or Salmonella typhimurium strains harbouring the incompatibility group X plasmid R6K. It also plated on a strain of Serratia marcescens carrying this plasmid. It failed to form plaques on Proteus mirabilis, P. morganii or Providencia alcalifaciens harbouring R6K, but did multiply on them. No phage increase occurred with homologous R- strains. Phage X also plated or registered an increase in titre on E. coli or S. typhimurium strains carrying various plasmids of incompatibility groups M, N, P-1, U or W as well as the unassigned plasmid R775. It adsorbed to pili determined by a group P-10 plasmid in a Pseudomonas aeruginosa strain but did not multiply on this organism. The phage was filamentous and curly, resistant to ribonuclease and diethyl ether and sensitive to chloroform. It adsorbed to the tips of pili.  相似文献   

13.
Neocarzinostatin, a protein with antibiotic activity, is a bacterial mutagen. We have investigated the mutagenicity of neocarzinostatin towards Salmonella typhimurium and discovered that, unlike the situation in Escherichia coli, neocarzinostatin will revert base pair substitution mutations (missense or nonsense). However, when the R46 factor derivative, plasmid pKM101, was introduced, the mutagenicity of neocarzinostatin towards base pair substitution-carrying mutants of S. typhimurium was readily detected. Neocarzinostatin had only modest activity in reverting a frameshift mutation in S. typhimurium, but that activity, too, required the presence of pKM101. Mutant pKM101 plasmids which no longer enhanced mutagenesis also lost their ability to promote neocarzinostatin-induced mutations. Finally, the umuC36 mutation, which renders E. coli nonmutable by ultraviolet light, also rendered the bacteria nonmutable by neocarzinostatin. The effect of the umuC36 mutation was suppressed by plasmid pKM101.  相似文献   

14.
No mutagenicity or an uncertain mutagenic response has been reported in the literature for methyl methanesulphonate (MMS) in S. typhimurium strain TA1535 when using the plate assay. In our studies we found a reproducible mutagenic activity of 62 revertants/mumole and plate for MMS in strain TA1535 when using the preincubation assay. A dose-dependent increase in revertants was, however, observed only at fairly high doses (exceeding 4 mumole). Two different slopes were observed in the dose-response curve when testing MMS with strain TA100. Slope A is dependent on the error-prone response, possible only in strain TA100 due to the pKm101 plasmid (R factor) but not possible in strain TA1535 due to its umuDC deficiency. Slope B observed at higher doses (as in strain TA1535) could be explained through a GC----AT transition initiated by the O6-methylation of guanine. Our findings demonstrate that MMS induces back mutation in S. typhimurium strains carrying the hisG46 missense mutation due to the formation of O6-methylguanine. In the case of strain TA100 the pKm101 plasmid-mediated error-prone mechanism is, however, the predominant process in MMS mutagenesis which leads to a higher mutagenic response at much lower doses than the GT----AT transition in strain TA1535.  相似文献   

15.
The dnaB266(Am) mutation in Escherichia coli K-12 is an amber mutation such that strains carrying this mutation are not viable in a sup+ strain. With five different R plasmids, it has been possible to construct viable R+ derivatives of this amber mutant and show that the plasmids themselves do not carry amber suppressors. This is interpreted as evidence for the presence of dnaB analog genes associated with these plasmids. Plasmid-positive strains carrying these genes often showed some degree of cryosensitivity of DNA synthesis and colony-forming ability. These observations indicate that the presence of dnaB analog genes in association with R plasmids must be relevant to the plasmid state or to some aspect of conjugative ability.  相似文献   

16.
Precise excision of transposon Tn10 results in reversion of the Trp- phenotype to Trp+ in a trp-1014::Tn10 strain of Salmonella typhimurium, and also occurs at a markedly higher frequency in a strain carrying the temperature-sensitive polA7 allele. The frequency with which precise excision events occurs can be modified by the plating medium, results indicating that the great majority of mutants which arise on broth-supplemented or tryptophan-supplemented minimal media actually arise on the selective plating medium. Trp+ revertants (1000) arising from excision of Tn10 were purified by re-streaking for single colonies; none were found to retain the Tn10 encoded resistance to tetracycline. Yields of Trp+ revertants of the polA7 strain were consistently higher when glycerol rather than glucose was used as sole carbon source in the selective medium. Clean excision of Tn10 can also be increased by ultraviolet irradiation in (R) plasmid-free strains, and is further increased in strains carrying an N-group plasmid (R205, R46 or pKM101). Ultraviolet-induced precise excision of Tn10 also occurs at a much enhanced frequency in a strain with a deletion through the uvrB gene; in this case, however, the addition of plasmid pKM101 leads to a decrease in yields of ultraviolet-induced precise excision events.  相似文献   

17.
In this paper we investigated the ability of 2-nitrofluorene to induce mutations leading to antibiotic resistance in quinolone-sensitive strain Salmonella typhimurium. After preincubation of bacteria with 2-nitrofluorene, the frequency of mutation to ciprofloxacin resistance was 57 fold higher than in the case of spontaneous mutability. Some of resultant resistant colonies showed a great increase of ciprofloxacin MIC.  相似文献   

18.
Salmonella typhimurium LT2 strains bearing plasmids pKM101, R64 or pColIb-P9 demonstrated enhanced UV survival when compared with strains not bearing plasmids. A strain of S. typhimurium bearing both pKM101 and pColIb-P9 survived UV irradiation slightly better than either of the single-plasmid strains. Spontaneous reversion of the hisG46 and trpE8 missense alleles was enhanced in each single-plasmid strain, and for the dual-plasmid strain containing pKM101 and pColIb-P9 enhancement represented a near additivity of the response seen for the single-plasmid strains. Following exposure to UV or visible-light irradiation, reversion of hisG46 and trpE8 was also enhanced in each single-plasmid strain, but quantitatively greater in the dual-plasmid strain and was equal to or slightly greater than additive the responses of the single-plasmid strains. In contrast to visible-light irradiation, UV exposure resulted in two phenotypic Trp+-revertant classes. One Trp+ class, having normal colony size (2.0 mm) and similar in number to His+ revertants, was comprised of intragenic revertants of trpE8, while the predominant Trp+ class, having smaller colony size (0.8 mm), represented intergenic suppressor revertants, illuminating the differences in mutation and/or repair specificity for UV and visible-light exposure. Methyl methane-sulfonate (MMS)-induced reversion of hisG46 was similar in effect to that seen with UV or visible-light irradiation. Plasmids pKM101 or pColIb-P9 enhanced the frequency of hisG46 reversion, while a more than additive response was seen in a strain with both plasmids. Furthermore, MMS-induced reversion of hisG46 was also observed to be greatest in a strain bearing plasmid R64 (incompatibility group I alpha) and pKM101, when compared with single-plasmid strains bearing either R64 or pKM101.  相似文献   

19.
Plasmid pKM101, which carries muc genes that are analogous in function to chromosomal umu genes, protected Escherichia coli strains AB1157 uvrB+ umuC+, JC3890 uvrB umuC+, TK702 uvrB+ umuC and TK501 uvrB umuC against ultraviolet irradiation (UV). Plasmid pGW16, a derivative of pKM101 selected for its increased spontaneous mutator effect, also gave some protection to the UmuC-deficient strains, TK702 and TK501. However, it sensitised the wild-type strain AB1157 to low, but protected against high doses of UV, whilst sensitising strain JC3890 to all UV doses tested. Even though its UV-protecting effects varied, pGW16 was shown to increase both spontaneous and UV-induced mutation in all strains. Another derivative of pKM101, plasmid pGW12, was shown to have lost all spontaneous and UV-induced mutator effects and did not affect post-UV survival. Plasmids pKM101 and pGW16 increased post-UV DNA synthesis in strains AB1157 and TK702, whereas pGW12 had no effect. Similarly, the wild-type UV-protecting plasmids R46, R446b and R124 increased post-UV DNA synthesis in strain TK501, but the non-UV-protecting plasmids R1, RP4 and R6K had no effect. These results accord with the model for error-prone DNA repair that requires umu or muc gene products for chain elongation after base insertion opposite non-coding lesions. They also suggest that the UV-sensitizing effects of pGW16 on umu+ strains can be explained in terms of overactive DNA repair resulting in lethal, rather than repaired UV-induced lesions.  相似文献   

20.
The induction of mutations to valine resistance and to rifampin resistance occurs after UV irradiation in bacteria carrying a deletion through the polA gene (delta polA), showing that DNA polymerase I (PolI) is not an essential enzyme for this process. The PolI deletion strain showed a 7- to 10-fold-higher spontaneous mutation frequency than the wild type. The presence in the deletion strain of the 5'----3' exonuclease fragment on an F' episome caused an additional 10-fold increase in spontaneous mutation frequency, resulting in mutation frequencies on the order of 50- to 100-fold greater than wild type. The mutator effect associated with the 5'----3' exonuclease gene fragment together with much of the effect attributable to the polA deletion was blocked in bacteria carrying a umuC mutation. The mutator activity therefore appears to reflect constitutive SOS induction. Excision-proficient polA deletion strains exhibited increased sensitivity to the lethal effect of UV light which was only partially ameliorated by the presence of polA+ on an F' episome. The UV-induced mutation rate to rifampin resistance was marginally lower in delta polA bacteria than in bacteria carrying the polA+ allele. This effect is unlikely to be caused by the existence of a PolI-dependent mutagenic pathway and is probably an indirect effect caused by an alteration in the pattern of excision repair, since it did not occur in excision-deficient (uvrA) bacteria. An excision-deficient polA deletion strain possessed UV sensitivity similar to that of an isogenic strain carrying polA+ on an F' episome, showing that none of the functions of PolI are needed for postreplication repair in the absence of excision repair. Our data provide no evidence for a pathway of UV mutagenesis dependent on PolI, although it remains an open question whether PolI is able to participate when it is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号