首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats   总被引:13,自引:0,他引:13  
A method has been worked out that allows the detection and isolation of bacteria fermenting molecular hydrogen and carbon dioxide to acetic acid.The ratio of methanogenic to acetogenic bacteria in sludge and lake sediment samples has been found to be approximately 100 to 1. Acetogenic bacteria could not be detected in rumen samples.  相似文献   

3.
Non-phototrophic CO 2 fixation by soil microorganisms   总被引:1,自引:0,他引:1  
Although soils are generally known to be a net source of CO2 due to microbial respiration, CO2 fixation may also be an important process. The non-phototrophic fixation of CO2 was investigated in a tracer experiment with 14CO2 in order to obtain information about the extent and the mechanisms of this process. Soils were incubated for up to 91 days in the dark. In three independent incubation experiments, a significant transfer of radioactivity from 14CO2 to soil organic matter was observed. The process was related to microbial activity and could be enhanced by the addition of readily available substrates such as acetate. CO2 fixation exhibited biphasic kinetics and was linearly related to respiration during the first phase of incubation (about 20–40 days). The fixation amounted to 3–5% of the net respiration. After this phase, the CO2 fixation decreased to 1–2% of the respiration. The amount of carbon fixed by an agricultural soil corresponded to 0.05% of the organic carbon present in the soil at the beginning of the experiment, and virtually all of the fixed CO2 was converted to organic compounds. Many autotrophic and heterotrophic biochemical processes result in the fixation of CO2. However, the enhancement of the fixation by addition of readily available substrates and the linear correlation with respiration suggested that the process is mainly driven by aerobic heterotrophic microorganisms. We conclude that heterotrophic CO2 fixation represents a significant factor of microbial activity in soils.  相似文献   

4.
5.
Anaerobically digested municipal sewage sludge which had been acclimated to monochlorophenol degradation for more than 2 years was shown to degrade pentachlorophenol (PCP). Di-, tri-, and tetrachlorophenols accumulated when PCP was added to the individual acclimated sludges. When the 2-chlorophenol- (2-CP), 3-CP-, and 4-CP-acclimated sludges were mixed in equal volumes, PCP was completely dechlorinated. The same results were obtained in sludge acclimated to the three monochlorophenol isomers simultaneously. With repeated PCP additions, 3,4,5,-trichlorophenol, 3,5-dichlorophenol, and 3-CP accumulated in less than stoichiometric amounts. All chlorinated compounds disappeared after PCP additions were stopped. All chlorinated compounds disappeared after PCP additions were stopped. Incubations with [14C]PCP resulted in 66% of the added 14C being mineralized to 14CO2 and 14CH4. Technical-grade PCP was found to be degraded initially at a rate very similar to that of reagent-grade PCP, but after repeated additions, the technical PCP was degraded more slowly. Pentabromophenol was also rapidly degraded by the mixture of acclimated sludges. These results clearly show the complete reductive dechlorination of PCP by the combined activities of three chlorophenol-degrading populations.  相似文献   

6.
Anaerobically digested municipal sewage sludge which had been acclimated to monochlorophenol degradation for more than 2 years was shown to degrade pentachlorophenol (PCP). Di-, tri-, and tetrachlorophenols accumulated when PCP was added to the individual acclimated sludges. When the 2-chlorophenol- (2-CP), 3-CP-, and 4-CP-acclimated sludges were mixed in equal volumes, PCP was completely dechlorinated. The same results were obtained in sludge acclimated to the three monochlorophenol isomers simultaneously. With repeated PCP additions, 3,4,5,-trichlorophenol, 3,5-dichlorophenol, and 3-CP accumulated in less than stoichiometric amounts. All chlorinated compounds disappeared after PCP additions were stopped. All chlorinated compounds disappeared after PCP additions were stopped. Incubations with [14C]PCP resulted in 66% of the added 14C being mineralized to 14CO2 and 14CH4. Technical-grade PCP was found to be degraded initially at a rate very similar to that of reagent-grade PCP, but after repeated additions, the technical PCP was degraded more slowly. Pentabromophenol was also rapidly degraded by the mixture of acclimated sludges. These results clearly show the complete reductive dechlorination of PCP by the combined activities of three chlorophenol-degrading populations.  相似文献   

7.
Summary The development of peripheral reticulum (PR) in chloroplasts varies in C3 and C4 plants. In general, PR is more extensive in C4 plants, but PR is also seen in the chloroplasts of some C3 plants. Within some C4 plants, PR is seen in the bundle sheath cells which predominantly use the C3 pathway. Thus, PR is not associated directly with the presence of the C4 pathway on a cellular basis. Its predominance in C4 plants must be related to some characteristic other than the method of CO2 fixation. Ultrastructural evidence suggests that PR is associated with the rapid transfer of substances into and out of chloroplasts and from mesophyll to bundle sheath cells.Cooperative investigations of the Department of Agronomy, University of Georgia, Athens, Georgia; Department of Agronomy, University of Florida, Gainesville, Florida; and the Plant Science Research Division, Agricultural Research Service, USDA, Gainesville, Florida. The mention of specific products is for the purpose of clarity and does not imply endorsement by the USDA. Journal Series No. 977 of the Georgia Agricultural Experiment Station, and Journal Series No. 3870 of the Florida Agricultural Experiment Station.  相似文献   

8.
Benzene was mineralized to CO2 by aquifer-derived microorganisms under strictly anaerobic conditions. The degradation occurred in microcosms containing gasoline-contaminated subsurface sediment from Seal Beach, California, and anaerobic, sulfide-reduced defined mineral medium supplemented with 20 mM sulfate. Benzene, at initial concentrations ranging from 40 to 200 microM, was depleted in all microcosms and more than 90% of 14C-labeled benzene was mineralized to 14CO2.  相似文献   

9.
环境保护和能源供应是人类关心的两大问题。能源消耗释放出的温室气体对环境造成了严重影响。利用CO_2固定途径可将CO_2转化成燃料或化学品。天然固碳生物通常存在生长缓慢、固碳效率低等问题。通过在模式微生物中增强或重构CO_2固定途径,实现CO_2的再循环,可提高燃料或化学品的产量,减少温室气体排放。文中详细介绍了通过代谢工程手段改造CO_2固定途径改善化学品生产以及糖合成,阐述了相关代谢途径及其中的关键酶在CO_2固定中的作用,介绍了电生化合成系统的应用,显示出CO_2固定的巨大潜力,并展望了未来CO_2固定的研究方向。  相似文献   

10.
11.
Benzene was mineralized to CO2 by aquifer-derived microorganisms under strictly anaerobic conditions. The degradation occurred in microcosms containing gasoline-contaminated subsurface sediment from Seal Beach, California, and anaerobic, sulfide-reduced defined mineral medium supplemented with 20 mM sulfate. Benzene, at initial concentrations ranging from 40 to 200 microM, was depleted in all microcosms and more than 90% of 14C-labeled benzene was mineralized to 14CO2.  相似文献   

12.
Autotrophic CO(2) fixation represents the most important biosynthetic process in biology. Besides the well-known Calvin-Benson cycle, five other totally different autotrophic mechanisms are known today. This minireview discusses the factors determining their distribution. As will be made clear, the observed diversity reflects the variety of the organisms and the ecological niches existing in nature.  相似文献   

13.
14.
The mineralization of organic carbon to CH4 and CO2 inSphagnum-derived peat from Big Run Bog, West Virginia, was measured at 4 times in the year (February, May, September, and November) using anaerobic, peat-slurry incubations. Rates of both CH4 production and CO2 production changed seasonally in surface peat (0–25 cm depth), but were the same on each collection date in deep peat (30–45 cm depth). Methane production in surface peat ranged from 0.2 to 18.8 mol mol(C)–1 hr–1 (or 0.07 to 10.4 g(CH4) g–1 hr–1) between the February and September collections, respectively, and was approximately 1 mol mol(C)–1 hr–1 in deep peat. Carbon dioxide production in surface peat ranged from 3.2 to 20 mol mol(C)–1 hr–1 (or 4.8 to 30.3 g(CO2) g–1 hr–1) between the February and September collections, respectively, and was about 4 mol mol(C)–1 hr–1 in deep peat. In surface peat, temperature the master variable controlling the seasonal pattern in CO2 production, but the rate of CH4 production still had the lowest values in the February collection even when the peat was incubated at 19°C. The addition of glucose, acetate, and H2 to the peat-slurry did not stimulate CH4 production in surface peat, indicating that CH4 production in the winter was limited by factors other than glucose degradation products. The low rate of carbon mineralization in deep peat was due, in part, to poor chemical quality of the peat, because adding glucose and hydrogen directly stimulated CH4 production, and CO2 production to a lesser extent. Acetate was utilized in the peat by methanogens, but became a toxin at low pH values. The addition of SO4 2– to the peat-slurry inhibited CH4 production in surface peat, as expected, but surprisingly increased carbon mineralization through CH4 production in deep peat. Carbon mineralization under anaerobic conditions is of sufficient magnitude to have a major influence on peat accumulation and helps to explain the thin (< 2 m deep), old (> 13,000 yr) peat deposit found in Big Run Bog.  相似文献   

15.
16.
Seven strains of extremely halophilic bacteria (Halobacterium spp., Halococcus spp., and Haloarcula sp.) fixed CO2 under light and dark conditions. Light enhanced CO2 fixation in Halobacterium halobium but inhibited it in Halobacterium volcanii and Haloarcula strain GN-1. Propionate stimulated 14CO2 incorporation in some strains, but inhibited it in others. Semi-starvation in basal salts plus glycerol induced enhanced CO2 fixation rates. 14CO2 fixation in semi-starved cells was stimulated by NH 4 + or pyruvate and inhibited by succinate and acetate in most strains. No possible reductant was found. In cell-free extracts of H. halobium, NH 4 + but not propionate stimulated 14CO2 fixation. No RuBP carboxylase activity was detected. The main 14C-labeled -keto acid detected after a 2-min incubation with 14CO2 and pyruvate was pyruvate. Little or no -ketobutyrate was detected among the early products of propionate-stimulated CO2 fixation. Glycine was the major amino acid synthesized during a 2-min incubation with NH 4 + , propionate, and 14CO2. Propionate-stimulated CO2 fixation was sensitive to trimethoprim and insensitive to avidin. A novel pathway for non-reductive CO2 fixation involving a glycine synthase reaction with CO2, NH 4 + , and a methyl carbon derived from the -carbon cleavage of propionate is tentatively proposed.Abbreviations used BBS buffered basal salts - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MOPS 3-(N-morpholino)propanesulfonic acid - DNPH 2,4-dinitrophenylhydrazine - DNP dinitrophenyl - TLC thin-layer chromatography - FH4 tetrahydrofolate This work was supported by National Science Foundation grant PCM-8116330 and Petroleum Research Fund grant PRF 13704-AC2  相似文献   

17.
Degradation of (+)-isothujone biosynthesized by Tanacetum vulgare or Thuja plicata from acetate-[1-14C], -[2-14C] and -[2-3H3] or from CO2-[14C] at physiological concentration revealed a pattern of asymmetric labelling whereby tracer predominantly (72–98% resided in that part of the skeleton derived from IPP. This is similar to the patterns previously obtained for uptake of MVA-[2-14C] but differed from those reported in other species with acetate-[14C] as precursor. Within the IPP-derived moiety the 3 parts derived from acetate units were not equivalently labelled. Partial degradations of geraniol and (+)-pulegone formed in Pelargonium graveolens and Mentha pulegium after uptake of 14C-labelled acetate or CO2 showed that the C-2 units of the skeletons of these monoterpenes were also labelled to widely differing extents and these patterns persisted over a range of feeding and seasonal conditions. These results suggest that metabolic pools of acetyl-CoA and/or acetoacetyl-CoA exist in these plants. The general occurrence of such pools and the consequent nonequivalent labelling patterns in secondary metabolism could invalidate biosynthetic conclusions drawn from partial degradations of labelled natural products.  相似文献   

18.
  1. Download : Download high-res image (210KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
The purpose of this study was to determine the fractional recovery rate of labeled CO(2) in the breath of severely burned children. This information is needed to perform tracer studies of substrate oxidation using carbon-labeled fatty acids. Nine children, ages 4-14 yr with massive burns participated in the study. All experiments were performed 7 days post burn after an overnight fast. A primed (60 micromol/kg), constant (2.0 micromol.kg(-1).min(-1)) infusion of [1,2-(13)C]acetate was given during a 4-h basal period and during a 4-h hyperinsulinemic euglycemic clamp. A priming dose (150 micromol/kg) of NaH(13)CO(3) was given at the beginning of the study. Breath samples were collected every 10 min during the last 40 min of each period. Indirect calorimetry was performed during the last 30 min of each period. The isotopic enrichment of (13)CO(2) was determined by isotope ratio-mass spectrometry, and total CO(2) excretion was measured by indirect calorimetry. The fractional recovery of acetate label was 0.89 +/- 0.05 and 0.88 +/- 0.04 during the basal state and clamp, respectively. We conclude that the fractional recovery of labeled acetate in severely burned children is approximately three times the recovery of a nonburned adult and similar to the value in exercising adults. The high recovery rate reflects the rapid turnover of the TCA cycle in burned children relative to the rate of exchange reactions. Minimal correction of expired CO(2) data is needed in this circumstance to quantify fatty acid oxidation using (13)C-labeled fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号