首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore the potential role of atmospheric carbon dioxide (CO2) on isoprene emissions using a global coupled land–atmosphere model [Community Atmospheric Model–Community Land Model (CAM–CLM)] for recent (year 2000, 365 ppm CO2) and future (year 2100, 717 ppm CO2) conditions. We incorporate an empirical model of observed isoprene emissions response to both ambient CO2 concentrations in the long‐term growth environment and short‐term changes in intercellular CO2 concentrations into the MEGAN biogenic emission model embedded within the CLM. Accounting for CO2 inhibition has little impact on predictions of present‐day global isoprene emission (increase from 508 to 523 Tg C yr?1). However, the large increases in future isoprene emissions typically predicted in models, which are due to a projected warmer climate, are entirely offset by including the CO2 effects. Projected global isoprene emissions in 2100 drop from 696 to 479 Tg C yr?1 when this effect is included, maintaining future isoprene sources at levels similar to present day. The isoprene emission response to CO2 is dominated by the long‐term growth environment effect, with modulations of 10% or less due to the variability in intercellular CO2 concentration. As a result, perturbations to isoprene emissions associated with changes in ambient CO2 are largely aseasonal, with little diurnal variability. Future isoprene emissions increase by more than a factor of two in 2100 (to 1242 Tg C yr?1) when projected changes in vegetation distribution and leaf area density are included. Changing land cover and the role of nutrient limitation on CO2 fertilization therefore remain the largest source of uncertainty in isoprene emission prediction. Although future projections suggest a compensatory balance between the effects of temperature and CO2 on isoprene emission, the enhancement of isoprene emission due to lower ambient CO2 concentrations did not compensate for the effect of cooler temperatures over the last 400 thousand years of the geologic record (including the Last Glacial Maximum).  相似文献   

2.
The tropical African tree species Acacia nigrescens Oliv. was grown in environmentally controlled growth chambers at three CO2 concentrations representative of the Last Glacial Maximum (~180 ppmv), the present day (~380 ppmv), and likely mid‐21st century (~600 ppmv) CO2 concentrations. Isoprene (C5H8) emissions, per unit leaf area, were greater at lower‐than‐current CO2 levels and lower at higher‐than‐current CO2 levels relative to controls grown at 380 ppmv CO2. Changes in substrate availability and isoprene synthase (IspS) activity were identified as the mechanisms behind the observed leaf‐level emission response. In contrast, canopy‐scale emissions remained unaltered between the treatments as changes in leaf‐level emissions were offset by changes in biomass and leaf area. Substrate concentration and IspS activity‐CO2 responses were used in a biochemical model, coupled to existing isoprene emission algorithms, to model isoprene emissions from A. nigrescens grown for over 2 years at three different CO2 concentrations. The addition of the biochemical model allowed for the use of emission factors measured under present day CO2 concentrations across all three CO2 treatments. When isoprene emissions were measured from A. nigrescens in response to instantaneous changes in CO2 concentration, the biochemical model satisfactorily represented the observed response. Therefore, the effect of changes in atmospheric CO2 concentration on isoprene emission at any timescale can be modelled and predicted.  相似文献   

3.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

4.
The long‐term effect of elevated atmospheric CO2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene‐emitting Quercus ilex L. and the isoprene‐emitting Quercus pubescens Willd.) native to a high‐CO2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at branch level, measuring the actual emissions under natural conditions, and at leaf level, measuring the basal emissions under the standard conditions of 30 °C and at light intensity of 1000 µmol m?2 s?1. Long‐term exposure to high atmospheric levels of CO2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO2 level by rapidly switching the CO2 concentration in the gas‐exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO2 on isoprenoid emission. The absence of a CO2 effect on actual emissions might indicate higher leaf temperature at elevated CO2, or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO2 effect in Mediterranean ecosystems. Under elevated CO2, isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO2. This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO2 levels.  相似文献   

5.
Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest‐trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)‐sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2‐treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high‐CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2‐treated trees take advantage from initial water savings. High‐resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2‐treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad‐leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2.  相似文献   

6.
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs) and net photosynthetic carbon fixation (Pn) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL) increased with leaf temperature with strong linear correlations for ETR (? = 0.98) and qL (? = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non‐photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary “ground‐truthing” for simulations of the large predicted increases in tropical isoprene emissions with climate warming.  相似文献   

7.
Poplar (Populus × euroamericana) saplings were grown in the field to study the changes of photosynthesis and isoprene emission with leaf ontogeny in response to free air carbon dioxide enrichment (FACE) and soil nutrient availability. Plants growing in elevated [CO2] produced more leaves than those in ambient [CO2]. The rate of leaf expansion was measured by comparing leaves along the plant profile. Leaf expansion and nitrogen concentration per unit of leaf area was similar between nutrient treatment, and this led to similar source–sink functional balance. Consequently, soil nutrient availability did not cause downward acclimation of photosynthetic capacity in elevated [CO2] and did not affect isoprene synthesis. Photosynthesis assessed in growth [CO2] was higher in plants growing in elevated than in ambient [CO2]. After normalizing for the different number of leaves over the profile, maximal photosynthesis was reached and started to decline earlier in elevated than in ambient [CO2]. This may indicate a [CO2]‐driven acceleration of leaf maturity and senescence. Isoprene emission was adversely affected by elevated [CO2]. When measured on the different leaves of the profile, isoprene peak emission was higher and was reached earlier in ambient than in elevated [CO2]. However, a larger number of leaves was emitting isoprene in plant growing in elevated [CO2]. When integrating over the plant profile, emissions in the two [CO2] levels were not different. Normalization as for photosynthesis showed that profiles of isoprene emission were remarkably similar in the two [CO2] levels, with peak emissions at the centre of the profile. Only the rate of increase of the emission of young leaves may have been faster in elevated than in ambient [CO2]. Our results indicate that elevated [CO2] may overall have a limited effect on isoprene emission from young seedlings and that plants generally regulate the emission to reach the maximum at the centre of the leaf profile, irrespective of the total leaf number. In comparison with leaf expansion and photosynthesis, isoprene showed marked and repeatable differences among leaves of the profile and may therefore be a useful trait to accurately monitor changes of leaf ontogeny as a consequence of elevated [CO2].  相似文献   

8.
Species‐specific responses to atmospheric CO2 enrichment may affect biodiversity, which in turn may alter ecosystem functioning. Here we have explored biodiversity effects in model assemblages of semi‐arid grassland of the northern Negev, Israel, at 280 ppm (pre‐industrial era), 440 ppm (early 21st century) and 600 ppm CO2 (mid to late 21st century). Thirty‐two mostly annual species were grown together in large containers (ca 400 kg each) on native soil and under a dynamic simulation of the Negev winter climate. CO2 enrichment increased concentrations of total non‐structural carbohydrates and C/N ratios, and reduced specific leaf area and nitrogen concentrations in leaves of all species. In contrast to these uniform CO2 effects on leaf quality, biomass and reproductive output remained unchanged in most species, and varied greatly among the few responsive ones (?80 to +145%). Biomass was significantly increased at elevated CO2 in Onobrychis crista‐galli (one of the six legume species) and was reduced in Biscutella didyma (Brassicaceae). Seed yield increased in three out of six legumes and in the root hemiparasite Parentucellia flaviflora, and decreased in the grass Aegilops peregrina. Fruit dry matter tended to be reduced in two Brassicaceae. Onobrychis, the largest and most responsive species present, was the most ‘mesic’ legume, and might have profited most from the higher soil moisture induced by CO2 enrichment. The significant CO2 response of only 5–6 out of 32 species, in particular their altered seed yield, suggests a potential shift in biodiversity. In a future CO2‐enriched atmosphere, ‘mesic’ legumes and root hemiparasites might be favored, while some Brassicaceae and grasses might decline. As indicated by significant 280‐ vs 440‐ppm differences, reductions in leaf nitrogen concentration of grasses and legumes are likely to be under way right now, and may negatively affect grazers. Altered seed yields were more pronounced between 440 and 600 ppm, suggesting that these changes could intensify as the atmospheric CO2 concentration continues to rise.  相似文献   

9.
Growing seasons are getting longer, a phenomenon partially explained by increasing global temperatures. Recent reports suggest that a strong correlation exists between warming and advances in spring phenology but that a weaker correlation is evident between warming and autumnal events implying that other factors may be influencing the timing of autumnal phenology. Using freely rooted, field‐grown Populus in two Free Air CO2 Enrichment Experiments (AspenFACE and PopFACE), we present evidence from two continents and over 2 years that increasing atmospheric CO2 acts directly to delay autumnal leaf coloration and leaf fall. In an atmosphere enriched in CO2 (by ~45% of the current atmospheric concentration to 550 ppm) the end of season decline in canopy normalized difference vegetation index (NDVI) – a commonly used global index for vegetation greenness – was significantly delayed, indicating a greener autumnal canopy, relative to that in ambient CO2. This was supported by a significant delay in the decline of autumnal canopy leaf area index in elevated as compared with ambient CO2, and a significantly smaller decline in end of season leaf chlorophyll content. Leaf level photosynthetic activity and carbon uptake in elevated CO2 during the senescence period was also enhanced compared with ambient CO2. The findings reveal a direct effect of rising atmospheric CO2, independent of temperature in delaying autumnal senescence for Populus, an important deciduous forest tree with implications for forest productivity and adaptation to a future high CO2 world.  相似文献   

10.
Isoprene emissions from the leaves of velvet bean (Mucuna pruriens L. var utilis) plants exhibited temperature response patterns that were dependent on the plant's growth temperature. Plants grown in a warm regimen (34/28°C, day/night) exhibited a temperature optimum for emissions of 45°C, whereas those grown in a cooler regimen (26/20°C, day/night) exhibited an optimum of 40°C. Several previous studies have provided evidence of a linkage between isoprene emissions and photosynthesis, and more recent studies have demonstrated that isoprene emissions are linked to the activity of isoprene synthase in plant leaves. To further explore this linkage within the context of the temperature dependence of isoprene emissions, we determined the relative temperature dependencies of photosynthetic electron transport, CO2 assimilation, and isoprene synthase activity. When measured over a broad range of temperatures, the temperature dependence of isoprene emission rate was not closely correlated with either the electron transport rate or the CO2 assimilation rate. The temperature optima for electron transport rate and CO2 assimilation rate were 5 to 10°C lower than that for the isoprene emission rate. The dependence of isoprene emissions on photon flux density was also affected by measurement temperature in a pattern independent of those exhibited for electron transport rate and CO2 assimilation rate. Thus, despite no change in the electron transport rate or CO2 assimilation rate at 26 and 34°C, the isoprene emission rate changed markedly. The quantum yield of isoprene emissions was stimulated by a temperature increase from 26 to 34°C, whereas the quantum yield for CO2 assimilation was inhibited. In greenhouse-grown aspen leaves (Populus tremuloides Michaux.), the high temperature threshold for inhibition of isoprene emissions was closely correlated with the high temperature-induced decrease in the in vitro activity of isoprene synthase. When taken together, the results indicate that although there may be a linkage between isoprene emission rate and photosynthesis, the temperature dependence of isoprene emission is not determined solely by the rates of CO2 assimilation or electron transport. Rather, we propose that regulation is accomplished primarily through the enzyme isoprene synthase.  相似文献   

11.
Controversial evidence of CO2‐responsiveness of isoprene emission has been reported in the literature with the response ranging from inhibition to enhancement, but the reasons for such differences are not understood. We studied isoprene emission characteristics of hybrid aspen (Populus tremula x P. tremuloides) grown under ambient (380 μmol mol?1) and elevated (780 μmol mol?1) [CO2] to test the hypothesis that growth [CO2] effects on isoprene emission are driven by modifications in substrate pool size, reflecting altered light use efficiency for isoprene synthesis. A novel in vivo method for estimation of the pool size of the immediate isoprene precursor, dimethylallyldiphosphate (DMADP) and the activity of isoprene synthase was used. Growth at elevated [CO2] resulted in greater leaf thickness, more advanced development of mesophyll and moderately increased photosynthetic capacity due to morphological “upregulation”, but isoprene emission rate under growth light and temperature was not significantly different among ambient‐ and elevated‐[CO2]‐grown plants independent of whether measured at 380 μmol mol?1 or 780 μmol mol?1 CO2. However, DMADP pool size was significantly less in elevated‐[CO2]‐grown plants, but this was compensated by increased isoprene synthase activity. Analysis of CO2 and light response curves of isoprene emission demonstrated that the [CO2] for maximum isoprene emission was shifted to lower [CO2] in elevated‐[CO2]‐grown plants. The light‐saturated isoprene emission rate (Imax,Q) was greater, but the quantum efficiency at given Imax,Q was less in elevated‐[CO2]‐grown plants, especially at higher CO2 measurement concentration, reflecting stronger DMADP limitation at lower light and higher [CO2]. These results collectively demonstrate important shifts in light and CO2‐responsiveness of isoprene emission in elevated‐[CO2]‐acclimated plants that need consideration in modeling isoprene emissions in future climates.  相似文献   

12.
Isoprene is the most abundant biogenic hydrocarbon released from vegetation and it plays a major role in tropospheric chemistry. Because of its link to climate change, there is interest in understanding the relationship between CO2, water availability and isoprene emission. We explored the effect of atmospheric elevated CO2 concentration and its interaction with vapour pressure deficit (VPD) and water stress, on gross isoprene production (GIP) and net ecosystem exchange of CO2 (NEE) in two Populus deltoides plantations grown at ambient and elevated atmospheric CO2 concentration in the Biosphere 2 Laboratory facility. Although GIP and NEE showed a similar response to light and temperature, their responses to CO2 and VPD were opposite; NEE was stimulated by elevated CO2 and depressed by high VPD, while GIP was inhibited by elevated CO2 and stimulated by high VPD. The difference in response between isoprene production and photosynthesis was also evident during water stress. GIP was stimulated in the short term and declined only when the stress was severe, whereas NEE started to decrease from the beginning of the experiment. This contrasting response led the carbon lost as isoprene in both the ambient and the elevated CO2 treatments to increase as water stress progressed. Our results suggest that water limitation can override the inhibitory effect of elevated CO2 leading to increased global isoprene emissions in a climate change scenario with warmer and drier climate.  相似文献   

13.
Physiological, biochemical and morpho‐anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast‐growing Arundo donax, which also is a strong isoprene emitter, and the slow‐growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H. macra. In drought‐stressed plants, photosynthesis was similarly inhibited in both species, but substantially recovered only in A. donax after rewatering. Decline of photochemical and biochemical parameters, increased concentration of CO2 inside leaves, and impairment of chloroplast ultrastructure were only observed in H. macra indicating damage of photosynthetic machinery under drought. It is suggested that volatile and non‐volatile isoprenoids produced by A. donax efficiently preserve the chloroplasts from transient drought damage, while H. macra invests on phenylpropanoids that are less efficient in preserving photosynthesis but likely offer better antioxidant protection under prolonged stress.  相似文献   

14.
Effects of environmental conditions on isoprene emission from live oak   总被引:12,自引:0,他引:12  
Live-oak plants (Quercus virginiana Mill.) were subjected to various levels of CO2, water stress or photosynthetic photon flux density to test the hypothesis that isoprene biosynthesis occurred only under conditions of restricted CO2 availability. Isoprene emission increases as the ambient CO2 concentration decreased, independent of the amount of time that plants had photosynthesized at ambient CO2 levels. When plants were water-stressed over a 4-d period photosynthesis and leaf conductance decreased 98 and 94%, respectively, while isoprene emissions remained constant. Significant isoprene emissions occurred when plants were saturated with CO2, i.e., below the light compensation level for net photosynthesis (100 mol m-2 s-1). Isoprene emission rates increased with photosynthetic photon flux density and at 25 and 50 mol m-2 s-1 were 7 and 18 times greater than emissions in the dark. These data indicate that isoprene is a normal plant metabolite and not — as has been suggested — formed exclusively in response to restricted CO2 or various stresses.Abbreviation PPFD photosynthetic photon flux density  相似文献   

15.
Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2 enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke's Free Air CO2 Enrichment experiment to determine the effects of elevated atmospheric CO2 concentration ([CO2]) on L before and after canopy closure in a pine forest with a hardwood component, focusing on interactions with temporal variation in water availability and spatial variation in nitrogen (N) supply. The dynamics of L were reconstructed using data on leaf litterfall mass and specific leaf area for hardwoods, and needle litterfall mass and specific leaf area combined with needle elongation rates, and fascicle and shoot counts for pines. The dynamics of pine L production and senescence were unaffected by elevated [CO2], although L senescence for hardwoods was slowed. Elevated [CO2] enhanced pine L and the total canopy L (combined pine and hardwood species; P<0.050); on average, enhancement following canopy closure was ~16% and 14% respectively. However, variation in pine L and its response to elevated [CO2] was not random. Each year pine L under ambient and elevated [CO2] was spatially correlated to the variability in site nitrogen availability (e.g. r2=0.94 and 0.87 in 2001, when L was highest before declining due to droughts and storms), with the [CO2]‐induced enhancement increasing with N (P=0.061). Incorporating data on N beyond the range of native fertility, achieved through N fertilization, indicated that pine L had reached the site maximum under elevated [CO2] where native N was highest. Thus closed canopy pine forests may be able to increase leaf area under elevated [CO2] in moderate fertility sites, but are unable to respond to [CO2] in both infertile sites (insufficient resources) and sites having high levels of fertility (maximum utilization of resources). The total canopy L, representing the combined L of pine and hardwood species, was constant across the N gradient under both ambient and elevated [CO2], generating a constant enhancement of canopy L. Thus, in mixed species stands, L of canopy hardwoods which developed on lower fertility sites (~3 g N inputs m?2 yr?1) may be sufficiently enhanced under elevated [CO2] to compensate for the lack of response in pine L, and generate an appreciable response of total canopy L (~14%).  相似文献   

16.
Globally increasing atmospheric CO2 concentrations are known to affect many aspects of plant physiology and development; however, little attention has been given to leaf and canopy optical properties. Three tropical trees in the Leguminosae, an important canopy tree family in many tropical forests, responded similarly to an experimental doubling of CO2 partial pressure with a 9–23% increase in spectral leaf reflectance to light in the visible (400–700 nm) waveband. Decreased leaf chlorophyll content under elevated CO2 may explain part of the observed increase in reflectance. However, analyses that statistically corrected for chlorophyll content effects on reflectance still indicated a significant CO2 effect. This results, in conjunction with the spectral pattern of the response, suggests that the primary mechanism is increased optical masking of chlorophyll under elevated CO2. The magnitude of the increase in leaf reflectance is sufficient to suggest that increased canopy reflectance of tropical forests (and possibly other terrestrial ecosystems) may be an important negative feedback in the response of global net radiative climate forcing to increasing atmospheric CO2.  相似文献   

17.
Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress‐induced accumulation of reactive oxygen species (ROS), but the products of isoprene‐ROS reactions in plants have not been detected. Using pyruvate‐2‐13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biota–chemistry–climate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.  相似文献   

18.
Leaf photosynthesis (Ps), nitrogen (N) and light environment were measured on Populus tremuloides trees in a developing canopy under free‐air CO2 enrichment in Wisconsin, USA. After 2 years of growth, the trees averaged 1·5 and 1·6 m tall under ambient and elevated CO2, respectively, at the beginning of the study period in 1999. They grew to 2·6 and 2·9 m, respectively, by the end of the 1999 growing season. Daily integrated photon flux from cloud‐free days (PPFDday,sat) around the lowermost branches was 16·8 ± 0·8 and 8·7 ± 0·2% of values at the top for the ambient and elevated CO2 canopies, respectively. Elevated CO2 significantly decreased leaf N on a mass, but not on an area, basis. N per unit leaf area was related linearly to PPFDday,sat throughout the canopies, and elevated CO2 did not affect that relationship. Leaf Ps light‐response curves responded differently to elevated CO2, depending upon canopy position. Elevated CO2 increased Pssat only in the upper (unshaded) canopy, whereas characteristics that would favour photosynthesis in shade were unaffected by elevated CO2. Consequently, estimated daily integrated Ps on cloud‐free days (Psday,sat) was stimulated by elevated CO2 only in the upper canopy. Psday,sat of the lowermost branches was actually lower with elevated CO2 because of the darker light environment. The lack of CO2 stimulation at the mid‐ and lower canopy was probably related to significant down‐regulation of photosynthetic capacity; there was no down‐regulation of Ps in the upper canopy. The relationship between Psday,sat and leaf N indicated that N was not optimally allocated within the canopy in a manner that would maximize whole‐canopy Ps or photosynthetic N use efficiency. Elevated CO2 had no effect on the optimization of canopy N allocation.  相似文献   

19.
Determining the spatial and temporal diversity of photosynthetic processes in forest canopies presents a challenge to the evaluation of biological feedbacks needed for improvement of carbon and climate models. Limited access with portable instrumentation, especially in the outer canopy, makes remote sensing of these processes a priority in experimental ecosystem and climate change research. Here, we describe the application of a new, active, chlorophyll fluorescence measurement system for remote sensing of light use efficiency, based on analysis of laser‐induced fluorescence transients (LIFT). We used mature stands of Populus grown at ambient (380 ppm) and elevated CO2 (1220 ppm) in the enclosed agriforests of the Biosphere 2 Laboratory (B2L) to compare parameters of photosynthetic efficiency, photosynthetic electron transport, and dissipation of excess light measured by LIFT and by standard on‐the‐leaf saturating flash methods using a commercially available pulse‐modulated chlorophyll fluorescence instrument (Mini‐PAM). We also used LIFT to observe the diel courses of these parameters in leaves of two tropical forest dominants, Inga and Pterocarpus, growing in the enclosed model tropical forest of B2L. Midcanopy leaves of both trees showed the expected relationships among chlorophyll fluorescence‐derived photosynthetic parameters in response to sun exposure, but, unusually, both displayed an afternoon increase in nonphotochemical quenching in the shade, which was ascribed to reversible inhibition of photosynthesis at high leaf temperatures in the enclosed canopy. Inga generally showed higher rates of photosynthetic electron transport, but greater afternoon reduction in photosynthetic efficiency. The potential for estimation of the contribution of outer canopy photosynthesis to forest CO2 assimilation, and assessment of its response to environmental stress using remote sensing devices such as LIFT, is briefly discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号