首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformation and calcium binding properties of the bicyclic nonapeptide BCP2, cyclo-(Glu(1)-Ala(2)-Pro(3)-Gly(4)-Lys(5)-Ala(6)-Pro(7)-Gly(8))-cyclo-(1gamma --> 5epsilon) Gly(9), have been investigated by means of NMR spectroscopy. Interproton distances, evaluated by nuclear Overhauser effect (NOE) contacts, and straight phi angles, from (3)J(NH-alphaCH), have been used to obtain a feasible model for the BCP2-Ca(2+) (BCP: bicyclic peptide) complex by means of restrained molecular dynamics (RMD). The NMR analysis of the free peptide, carried out in CD(3)CN, shows the presence in solution of at least four conformers in intermediate exchange rate. The addition of calcium ions caused the appearance of a new set of resonances, differing from those observed for the free BCP2. A comparison with published data about the conformational behavior of the closely analogous peptide BCP3, differing from BCP2 for two Leu residues instead of two Ala residues in positions 2 and 6, shows that this simple substitution dramatically increases the peptide flexibility. On the contrary, upon calcium ion addition, both BCP2 and BCP3 reach a strictly close conformation, as strongly testified by the almost identical (1)H-NMR spectra exhibited by both peptides. The RMD molecular model of the BCP2-Ca(2+) complex, here reported, is a quite symmetric structure, presenting a three-dimensional cavity ideal for the binding of spherical cations. Four carbonyls from the main ring (Ala(2), Gly(4), Ala(6) and Gly(8)) point toward it, offering, together with the two carbonyls of the peptide bridge (Gly(9) and gammaGlu(1)), putative coordinations to the cation.  相似文献   

2.
We have applied random-search, energy minimization and molecular dynamics simulations to investigate the structural aspects of the interaction of N-acetyl-L-prolyl-D-alanyl-L-alanine-N'-methylamide with Ca2+. Spectral data on related peptides had suggested that the beta-turn conformation might be a prerequisite for the binding of cation ion by such short linear peptides. In order to relate the conformational characteristics with the Ca(2+)-binding affinities of these peptides, the molecular events involved in cation binding need to be understood. We have addressed this problem in this study by using a systematic approach that involved the following steps. First, a random search technique was used to generate a large population of conformers for the free peptide in the absence of Ca2+. Next, the energies of these conformers were computed. Conformations with energies within 4 kcal/mol of the global minimum were analysed and found to fall into four main groups characterized by the presence of different types of hydrogen-bonded structures including single and consecutive beta-turns. The energies for interconversion of conformers from one group to another were computed and found to be relatively small (< 10 kcal/mol). Finally, molecular dynamics of the peptide at 300K in the presence of Ca2+ were used to simulate the cation binding process. Starting points for these simulations were generated by placing the ion in the vicinity of two molecules of the peptide. The simulation results showed that the conformers with two consecutive beta-turns led to the formation of a stable 2:1 (peptide:Ca2+) sandwich complex in agreement with earlier experimental observations on similar linear peptides. While the starting conformation of the peptide in the consecutive beta-turn structure allowed for the proper orientation of three carbonyl oxygen atoms for chelation to the metal ion, the dynamics of complex formation rearranged the peptide structure substantially, leading to the formation of an 8-coordinated Ca2+ complex in a dodecahedral spatial arrangement. Thus, based on the energetics of the structures and processes involved, the present study demonstrates that: a) peptide-Ca2+ complex formation is initiated by conformers adopting consecutive beta-turn structures which subsequently go over to a significantly different conformation found in the complex; and, b) The facile interconversion between the low-energy conformers in the different groups would help shift the equilibrium population towards the consecutive beta-turn structure during the complex formation.  相似文献   

3.
Destruxin A, a cyclohexadepsipeptide related to the enniatins and beauvericin, exhibits ionophoric properties. Calcium ion mobilization across liposomal membrane barriers, for example, has been demonstrated using the calcium ion-sensitive dyes Arsenazo III and Fura-2. Initial molecular mechanics/molecular dynamics calculations indicate the potential for destruxin A to form a coordination complex with calcium in which the divalent cation is bound at the center of a sandwich formed by two molecules of destruxin A. This novel calcium ion binding may help explain the diverse biological effects exhibited by the destruxins.  相似文献   

4.
Gaseous multiply protonated disulfide-linked peptides have been subjected to reactions with AuCl2(-) ions to explore the possibility of effecting cation switching of Au+ for two protons and to determine whether cationization by Au+ ions affords selective dissociation of disulfide linkages. The incorporation of Au+ into several model disulfide-linked peptides proved to be straightforward. The primary ion/ion reaction channels were proton transfer, which does not lead to Au+ incorporation, and attachment of AuCl2(-) ions to the polypeptide cation, which does incorporate Au+. Fragmentation of the attachment product, the extent of which varied with peptide and charge state, led to losses of one or more molecules of HCl and, to some extent, cleavage of polypeptides at the disulfide linkage into its two constituent chains. Collisional activation of the intact metal-ion-incorporated peptides showed cleavage of the disulfide linkage to be a major, and in some cases exclusive, process. Cations with protons as the only cationizing agents showed only small contributions from cleavage of the disulfide linkage. These results indicate that Au+ incorporation into a disulfide-linked polypeptide ion is a promising way to effect selective dissociation of disulfide bonds. Cation switching via ion/ion reactions is a convenient means for incorporating gold and is attractive because it avoids the requirement of adding metal salts to the analyte solution.  相似文献   

5.
Electrospray mass spectrometry was employed as a tool in this first study on the molecular interaction between the alkali metal ions and antifungal lipopeptide iturin A, and some analogues. Cationisation by sodium and signal intensity of lipopeptide species depended on sodium concentration, but was independent of sample solvent, carrier solvent polarity and sample pH between 4 and 11. 8-Beta, a linear analogue of iturin A2 (8-Beta; beta-aminotetradecanoyl-NYNQPNS), and its shorter linear lipopeptide analogues, associated either one or two alkali metal cations, while the N-->C cyclic peptides associated with only one cation. The chirality of the beta-NC14 residue had a limited influence on the cationisation. It was observed that 8-Beta contained at least four interaction sites for a cation of which two, the C-terminal carboxylate and the side-chain of tyrosine, can take part in ionic interaction with a cation. It is proposed that the remaining two interaction centres of alkali metal ions are within the two type II beta-turns found in conformation of natural iturin A. This was corroborated by the diminished capacity of the shorter peptides, in which one of the beta-turns was eliminated to bind a second larger cation. All the lipopeptides showed the same order of alkali metal ion selectivity: Na+ > K+ > Rb+. These results indicated a size limitation in the interaction cavity or cavities. The absence of, or observation of only low abundance, di-cationised complexes of cyclic peptides the indicated association of the cation in the interior of the peptide ring. It is thus hypothesised that alkali metal ions can bind in one of the two beta-turns in the natural iturin A molecule.  相似文献   

6.
The cyclotides are the family of hydrophobic bioactive plant peptides, characterized by a circular protein backbone and three knot forming disulfide bonds. It is believed that membrane activity of the cyclotides underlines their antimicrobial, cytotoxic and hemolytic properties, but the specific interactions with divalent cations can be also involved. To assess the mode of membrane interaction and divalent cation coordination in cyclotides, the spatial structure of the Möbius cyclotide Kalata B7 from the African perennial plant Oldenlandia affinis was determined in the presence of anisotropic membrane mimetic (dodecylphosphocholine micelles). The model of peptide/cation/micelle complex was built using 5-doxylstearate and Mn2+ relaxation probes. Results show that the peptide binds to the micelle surface with relatively high affinity by two hydrophobic loops (loop 2 – Thr6-Leu7 and loop 5 – Trp19-Ile21). The partially hydrated divalent cation is coordinated by charged side-chain of Glu3, aromatic side chain of Tyr11 and free carbonyls of Thr4 and Thr9, and is located in direct contact with the polar head-groups of detergent. The comparison with data about other cyclotides indicates that divalent cation coordination is the invariant property of all cyclotides, but the mode of peptide/membrane interactions is varied. Probably, the specific cation/peptide interactions play a major, but yet not known, role in the biological activity of the cyclotides.  相似文献   

7.
Two computer models of the outer vestibule of the pore of the N-type voltage-gated Ca2+ channel are predicted. The models are constructed from β-hairpin peptide segments in the S5–S6 loops of each of the four domains that produce the channel. These hairpins together are modeled to form a short eight-stranded β barrel. The models contain a ring of glutamates at the base of the barrel, which have been shown by mutagenesis experiments to function as a selectivity filter. These filters are suggested by the models to be of the correct dimensions to allow the permeation of a hydrated calcium ion, where the filter glutamates may substitute for molecules of water from the hydration shell of the ion. The models also suggest that a ring of threonines and an aspartate might be present between the mouth of the pore and the filter, and hence the models may prove useful in suggesting future mutagenesis experiments.  相似文献   

8.
M Ohnishi  R A Reithmeier 《Biochemistry》1987,26(23):7458-7465
Rabbit skeletal muscle calsequestrin was fragmented by using trypsin in the presence and absence of calcium. Calcium ion was found to protect calsequestrin from proteolysis, and the peptides produced in the presence of calcium were stable to further digestion. Peptides produced in the presence or absence of calcium had a decreased helical content but maintained their ability to bind calcium. The amino acid sequence of a 59-residue carboxyl-terminal tryptic peptide was determined by automated Edman degradation and carboxypeptidase Y digestion of carboxyl-terminal tryptic, chymotryptic, and cyanogen bromide peptides. This peptide is highly acidic (Asp + Glu = 42%, Lys + Arg = 0), and it bound a total of 15 calcium ions per mole of peptide (Kd = 8.5 mM). The intrinsic tryptophan fluorescence of the peptide was enhanced by 10% upon binding Ca2+ with the dissociation constant of 1 mM. Analyses of the circular dichroism spectra of the peptide showed that it was primarily in a random-coil conformation with little helical (2%) and moderate beta-structure (25%) regardless of the calcium concentration. This peptide also bound 7 mol of terbium per mole of peptide with high affinity (Kd = 7.5 microM).  相似文献   

9.
Bicyclic peptides are useful model molecules that can mimic the constrained local folding of a great number of natural peptides and proteins, such as ionophoric peptides, enzyme active site, and ligand-receptor active site. The synthesis of the bicyclic title compound with the liquid phase method is described with experimental details. Of particular interest is the heterodetic closure of the second ring. The peptide showed a complexing activity with metal cations like Ba2+, Ca2+, and Mg2+. The free bicyclic peptide conformation in solution has been studied by means of NMR spectroscopy and a plausible structure model worked out with model building on NMR constraints is proposed.  相似文献   

10.
Inoue H  Ohira T  Nagasawa H 《Peptides》2007,28(3):566-573
Calcification-associated peptide (CAP)-1 is considered to play an important role in calcification of the exoskeleton of the crayfish, Procambarus clarkii. In this study, in order to clarify the molecular mechanism of calcification, we constructed expression systems of recombinant molecules of CAP-1 and its related peptides in Escherichia coli, and verified the structure-activity relationship of these peptides. The inhibitory assay on calcium carbonate precipitation and the calcium-binding assay showed that the C-terminal acidic region was most important for both activities. The CD spectra of these peptides varied depending on calcium concentration and showed that the N-terminal region is associated with the peptide conformation. These results indicate that the C-terminal part of CAP-1 may concentrate calcium ions for nucleation and/or interact with calcium carbonate precipitate to control the growth and that the N-terminal part contribute to maintaining the peptide conformation.  相似文献   

11.
Fluorescence energy transfer analysis of calmodulin-peptide complexes.   总被引:2,自引:0,他引:2  
The interactions between calmodulin and the tryptophan residues of synthetic peptides corresponding to the calmodulin binding domains of skeletal muscle myosin light-chain kinase and the plasma membrane calcium pump were examined. The single tryptophan residue contained in each peptide became relatively immobilized and inaccessible to iodide ion upon binding to calmodulin, indicating that the indole side chain was inserted into a hydrophobic cleft in the surface of calmodulin. Fluorescence energy transfer from peptidyl tryptophan residues to an AEDANS moiety attached to cysteine-26 of spinach calmodulin was measured. Included in these analyses was a tryptophan-containing peptide analog of the calmodulin binding domain of neuromodulin. These data indicated that the indole ring of each peptide inserted 32-35 A away from cysteine-26 and may therefore interact with the carboxyl-terminal lobe of CaM in its "bent" conformation [Persechini & Kretsinger (1988a) J. Cardiovasc. Pharmacol. 12 (Suppl 5), S1-S12; Ikura et al. (1992) Science 256, 632-638; Vorherr et al. (1992) Eur. J. Biochem. 204, 931-937]. The interchange of tryptophan-3 and phenylalanine-21 of the calcium pump peptide increased the efficiency of energy transfer to the AEDANS-moiety approximately 12-fold, reducing the calculated distance to 20 A. These data suggest that phenylalanine-21 of the calcium pump peptide interacts with the hydrophobic cleft in the amino-terminal lobe of CaM.  相似文献   

12.
The structure of bovine intestinal calcium-binding protein (ICaBP) has been determined crystallographically at a resolution of 2.3 A and refined by a least squares technique to an R factor of 17.8%. The refined structure includes all 600 non-hydrogen protein atoms, two bound calcium ions, and solvent consisting of one sulfate ion and 36 water molecules. The molecule consists of two helix-loop-helix calcium-binding domains known as EF hands, connected by a linker containing a single turn of helix. Helix-helix interactions are primarily hydrophobic, but also include a few strategic hydrogen bonds. Most of the hydrogen bonds, however, are found in the calcium-binding loops, where they occur both within a single loop and between the two. Examination of the hydrogen bonding patterns in the calcium-binding loops of ICaBP and the related protein, parvalbumin, reveals several conserved hydrogen bonds which are evidently important for loop stabilization. The primary and tertiary structural features which promote the formation of an EF hand were originally identified from the structure of parvalbumin. They are modified in light of the ICaBP structure and considered as they apply to other calcium-binding proteins. The C-terminal domain of ICaBP is a normal EF hand, with ion binding properties similar to those of the calmodulin hands, but the N-terminal domain is a variant hand whose calcium ligands are mostly peptide carbonyls. Relative to a normal EF hand, this domain exhibits a similar KD for calcium binding but a greatly reduced affinity for calcium analogs such as cadmium and the lanthanide series. Lanthanides in particular may be inappropriate models for calcium in this system.  相似文献   

13.
The amino-terminal segment of the membrane-anchored subunit of influenza hemagglutinin (HA) plays a crucial role in membrane fusion and, hence, has been termed the fusion peptide. We have studied the secondary structure, orientation, and effects on the bilayer structure of synthetic peptides corresponding to the wild-type and several fusogenic and nonfusogenic mutants with altered N-termini of the influenza HA fusion peptide by fluorescence, circular dichroism, and Fourier transform infrared spectroscopy. All peptides contained segments of alpha-helical and beta-strand conformation. In the wild-type fusion peptide, 40% of all residues were in alpha-secondary and 30% in beta-secondary structures. By comparison, the nonfusogenic peptides exhibited larger beta/alpha secondary structure ratios. The order parameters of the helices and the amide carbonyl groups of the beta-strands of the wild-type fusion peptide were measured separately, based on the infrared dichroism of the respective absorption bands. Order parameters in the range 0.1-0.7 were found for both segments of the wild-type peptide, which indicates that they are most likely aligned at oblique angles to the membrane normal. The nonfusogenic but not the fusogenic peptides induced splitting of the infrared absorption band at 1735 cm(-1), which is assigned to stretching vibrations of the lipid ester carbonyl bond. This splitting, which reports on an alteration of the hydrogen bonds formed between the lipid ester carbonyls and water and/or hydrogen-donating groups of the fusion peptides, correlated with the beta/alpha ratio of the peptides, suggesting that unpaired beta-strands may replace water molecules and hydrogen-bond to the lipid ester carbonyl groups. The profound structural changes induced by single amino acid replacements at the extreme N-terminus of the fusion peptide further suggest that tertiary or quaternary structural interactions may be important when fusion peptides bind to lipid bilayers.  相似文献   

14.
Complex formation of valinomycin with Ba2+ ions was investigated by circular dichroism spectroscopy. The results indicated that Ba2+ forms entirely different types of complexes when compared with K+. The data with perchlorate salt showed evidence for the formation of less stable V2C (peptide sandwich), VC (1:1), and VC2 (ion sandwich) complexes followed by a stable final complex upon gradual addition of salt (V stands for valinomycin and C for the cation). This final complex possibly has a flat structure with no internal hydrogen bonds, similar to that of valinomycin in highly polar solvents. The possible complexation mechanism and the role played by anions and isopropyl side chains are highlighted.  相似文献   

15.
Peptide microarrays displaying biologically active small synthetic peptides in a high-density format provide an attractive technology to probe complex samples for the presence and/or function of protein analytes. We present a new approach for manufacturing functional peptide microarrays for molecular immune diagnostics. Our method relies on the efficiency of site-specific solution-phase coupling of biotinylated synthetic peptides to NeutrAvidin (NA) and localized microdispensing of peptide-NA-complexes onto activated glass surfaces. Antibodies are captured in a sandwich manner between surface immobilized peptide probes and fluorescence-labeled secondary antibodies. Our work includes a total of 54 peptides derived from immunodominant linear epitopes of the T7 phage capsid protein, Herpes simplex virus glycoprotein D, c-myc protein, and three domains of the Human coronavirus polymerase polyprotein and their cognate mAbs. By using spacer molecules of different type and length for NA-mediated peptide presentation, we show that the incorporation of a minimum spacer length is imperative for antibody binding, whereas the peptide immobilization direction has only secondary importance for antibody affinity and binding. We further demonstrate that the peptide array is capable of detecting low-picomolar concentrations of mAbs in buffered solutions and diluted human serum with high specificity.  相似文献   

16.
Scaffolded peptides, in which fragments of the sequence are presented through a molecular scaffold in a discontinuous and nonlinear fashion, are promising candidates for the mimicry of discontinuous protein binding sites. Twelve scaffold molecules based on cyclic peptides with ring sizes ranging from 13 to 30 were generated. Up to three different peptide fragments were attached to the scaffolds in a site-selective manner, yielding scaffolded peptides in excellent purities, as documented by MS, HPLC, and 2D (1)H NMR spectroscopy data.  相似文献   

17.
P Chakrabarti 《Biochemistry》1990,29(3):651-658
An analysis of the geometry of metal binding by peptide carbonyl groups in proteins is presented. Such metal ions are predominantly calcium in known protein structures. Cations tend to be located in the peptide plane, near the C = O bond direction. This distribution differs from that observed for water molecules bound to carbonyl oxygens. Most metal ions are bound to carbonyl oxygens of peptides in turns or in regions with no regular secondary structure. More infrequent binding interactions occur at the C-terminal end of alpha-helices or at the edges and sides of beta-sheets, where the geometrical preferences of the metal-carbonyl interaction may be satisfied. In many proteins carbonyl groups that are one, two, or three residues apart along the polypeptide chain bind to the same cation; these structures show a limited number of main-chain conformations around the metal center.  相似文献   

18.
To investigate the role of divalent cations in crystal packing, a Dickerson-Drew-type dodecamer with the sequence d(CGCGAATXCGCG), containing 2'-deoxy-5-formyluridine at X, was crystallized under several conditions with Ba(2+) ion instead of Mg(2+) ion. The crystal structure is isomorphous with the original Dickerson-type crystal containing Mg(2+) ion. In the Mg(2+)-free crystals, however, a five-membered ring of water molecules occupies the same position as the magnesium site found in the Mg(2+)-containing crystals, and connects the two duplexes similarly to the hydrated Mg(2+) ion. It has been concluded that the five-membered water molecules can take the place of the hydrated magnesium cation in crystallization. The 5-formyluracil residues form the canonical Watson-Crick pair with the opposite adenine residues.  相似文献   

19.
Amylin and adrenomedullin are related peptides with some homology to both calcitonin and calcitonin gene-related peptide (CGRP). All these peptides have in common a 6-amino acid ring structure at the amino-terminus created by a disulfide bond. In addition, the carboxy-termini are amidated. Both amylin and adrenomedullin have recently been found to stimulate the proliferation of osteoblasts in vitro, and to increase indices of bone formation in vivo when administered either locally or systemically. Both amylin and adrenomedullin have also been found to act on chondrocytes (Cornish et al., submitted for publication), stimulating their proliferation in culture and increasing tibial growth plate thickness when administered systemically to adult mice. Studies of structure-activity relationships have demonstrated that osteotropic effects of amylin and adrenomedullin can be retained in peptide fragments of the molecules. The full-length peptide of amylin has known effects on fuel metabolism, and systemic administration of amylin is also associated with increased fat mass. However, the octapeptide fragment of the molecule, amylin-(1-8), is osteotropic and yet has no activity on fuel metabolism. Similar fragments of adrenomedullin have also been defined, which retain activity on bone but lack the parent peptide's vasodilator properties. Both amylin-(1-8) and adrenomedullin-(27-52) act as anabolic agents on bone, increasing bone strength when administered systemically. Thus, these small peptides, or analogues of it, are potential candidates as anabolic therapies for osteoporosis. Both amylin and adrenomedullin may have effects on bone metabolism. Amylin is secreted following eating and may direct calcium and protein absorbed from the meal into new bone synthesis. Amylin circulates in high concentrations in obese individuals, and might contribute to the association between bone mass and fat mass. Our recent findings demonstrating the co-expression of adrenomedullin and adrenomedullin receptors in osteoblasts, along with the findings that the peptide and its receptor are easily detectable during rodent embryogenesis, suggest that this peptide is a local regulator of bone growth. Thus, the findings reviewed in this paper illustrate that amylin and adrenomedullin may be relevant to the normal regulation of bone mass and to the design of agents for the treatment of osteoporosis.  相似文献   

20.
The human CD23 molecule (low affinity receptor for IgE) has a C-type lectin domain, a reversed Arg-Gly-Asp (RGD) sequence near the C-terminus, and an "RGD-binding inhibitory peptide" at the root of the N-sugar chain. Three peptides were synthesized to determine their functions, i.e., #1, including an inverse RGD sequence near the C-terminus; #2, RGD-binding inhibitory peptides in the gpIIIa chain of platelet integrin gpIIb/IIIa; and #3, the inverse sequence located at the root of the N-sugar chain of CD23 which has homology to peptide 2. Among the three peptide, only peptide 3 inhibited aggregation of L-KT9 cells. Isotope-labeled peptides 1 and 3 bound to MHC class II molecules but peptide 1 did not bind to CD23 molecules. Peptide 3 showed a higher affinity to MHC class II than did peptide 1. Both peptides in CD23, therefore, seem to have interesting and important functions in relation to MHC class II molecules and also to CD23 molecules when CD23 on EBV-transformed B cells acts as a lectin in homotypic cell aggregation. The physiological function of CD23 was discussed from an evolutional point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号