首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ketone-body metabolism in tumour-bearing rats.   总被引:3,自引:3,他引:0       下载免费PDF全文
During starvation for 72 h, tumour-bearing rats showed accelerated ketonaemia and marked ketonuria. Total blood [ketone bodies] were 8.53 mM and 3.34 mM in tumour-bearing and control (non-tumour-bearing) rats respectively (P less than 0.001). The [3-hydroxybutyrate]/[acetoacetate] ratio was 1.3 in the tumour-bearing rats, compared with 3.2 in the controls at 72 h (P less than 0.001). Blood [glucose] and hepatic [glycogen] were lower at the start of starvation in tumour-bearing rats, whereas plasma [non-esterified fatty acids] were not increased above those in the control rats during starvation. After functional hepatectomy, blood [acetoacetate], but not [3-hydroxybutyrate], decreased rapidly in tumour-bearing rats, whereas both ketone bodies decreased, and at a slower rate, in the control rats. Blood [glucose] decreased more rapidly in the hepatectomized control rats. Hepatocytes prepared from 72 h-starved tumour-bearing and control rats showed similar rates of ketogenesis from palmitate, and the distribution of [1-14C] palmitate between oxidation (ketone bodies and CO2) and esterification was also unaffected by tumour-bearing, as was the rate of gluconeogenesis from lactate. The carcinoma itself showed rapid rates of glycolysis and a poor ability to metabolize ketone bodies in vitro. The results are consistent with the peripheral, normal, tissues in tumour-bearing rats having increased ketone-body and decreased glucose metabolic turnover rates.  相似文献   

2.
Decreased ketonaemia in the monosodium glutamate-induced obese rats   总被引:3,自引:0,他引:3  
Plasma concentrations of total ketone bodies, acetoacetate (AcAc) and 3-hydroxybutyrate (3-OHBA) in monosodium glutamate (MSG)-induced obese rats were measured. MSG-treated rats showed higher Lee's indices, shorter naso-anal and tail length, and a more marked intraperitoneal fat deposition than control rats. Plasma concentrations of glucose, free fatty acid, triglyceride and phospholipids were significantly increased in the MSG-treated rats as compared to the control rats (24 weeks-old). Plasma levels of total ketone bodies, AcAc and 3-OHBA were all decreased in the MSG-treated rats as compared to control rats. The ratio, 3-OHBA/AcAc in the MSG-treated rats were not different from those in the control rats.  相似文献   

3.
Since during pregnancy the mother switches from an anabolic to a catabolic condition, the present study was addressed to determine the effect of 48 h food deprivation on days 7, 14 and 20 of pregnancy in the rat as compared to age matched virgin controls. Body weight, free of conceptus, decreased with food deprivation more in pregnant than in virgin rats, with fetal weight (day 20) also diminishing with maternal starvation. The decline of plasma glucose with food deprivation was greatest in 20 day pregnant rats. Insulin was highest in fed 14 day pregnant rats, and declined with food deprivation in all the groups, the effect being not significant in 7-day pregnant rats. Food deprivation increased plasma glycerol only in virgin and 20 day pregnant rats. Plasma NEFA and 3-hydroxybutyrate increased with food deprivation in all groups, the effect being highest in 20 day pregnant rats. Food deprivation decreased plasma triacylglycerols in 14 day pregnant rats but increased in 20 day pregnant rats. In 20-day fetuses, plasma levels of glucose, NEFA and triacylglycerols were lower than in their mothers when fed, and food deprivation caused a further decline in plasma glucose, whereas both NEFA and 3-hydroxybutyrate increased. Liver triacylglycerols concentration did not differ among the groups when fed, whereas food deprivation caused an increase in all pregnant rats and fetuses, the effect being highest in 20-day pregnant rats. Lipoprotein lipase (LPL) activity in adipose tissue was lower in 20 day pregnant rats than in any of the other groups when fed, and it decreased in all the groups with food deprivation, whereas in liver it was very low in all groups when fed and increased with food deprivation only in 20 day pregnant rats. A significant increase in liver LPL was found with food deprivation in 20 day fetuses, reaching higher values than their mothers. Thus, the response to food deprivation varies with the time of pregnancy, being lowest at mid pregnancy and greatest at late pregnancy, and although fetuses respond in the same direction as their mothers, they show a specific response in liver LPL activity.  相似文献   

4.
Abstract: Local cerebral glucose utilization was measured by the [14C]2-deoxy- d -glucose method in conscious control and hyperketonemic rats. Hyperketonemia was induced by 3 days of starvation or by infusion of 3- hydroxybutyrate in fed rats. These treatments produced combined blood ketone body concentrations (acetoacetate + 3-hydroxybutyrate) of from 1.2 to 2.4 mM. Neither treatment significantly affected glucose utilization in any of the 15 brain regions studied. These observations indicate that hyperketonemia in resting, conscious rats does not interfere with brain uptake and phosphorylation of glucose.  相似文献   

5.
This work investigates the effect of alloxan-induced short-term diabetes (24 h) on D-3-hydroxybutyrate metabolism at physiological and non-physiological concentrations of the ketone body in the isolated non-working perfused rat heart. Also the effect of insulin (2 mU.ml−1) on D-3-hydroxybutyrate metabolism was investigated in hearts from normal and diabetic rats. The rates of D-3-hydroxybutyrate utilization and oxidation and of acetoacetate production were proportional to D-3-hydroxybutyrate concentration. The utilization of D-3-hydroxybutyrate showed saturation kinetics in hearts from normal and diabetic rats, in the presence and absence of insulin. Acute short-term diabetes augmented D-3-hydroxybutyrate utilization and oxidation at 1.25 and 2.5 mM DL-3-HB, with no significant effect at higher concentrations, but increased acetoacetate production at all investigated concentrations. In hearts from normal rats, insulin enhanced D-3-hydroxybutyrate utilization and oxidation at 2.5, 5, and 10 mM DL-3-HB, but no effect was observed at the lowest (1.25 mM) and highest (16 mM) DL-3-HB concentrations. Insulin had no effect on D-3-hydroxybutyrate metabolism in hearts from diabetic rats. No significant effect of insulin on the rate of acetoacetate production in normal and diabetic states was observed.  相似文献   

6.
Lumbar fat pad pieces taken from fed and 48 h starved 19-day pregnant rats and virgin controls were incubated for different times with [U-14C] glycerol, albumin and glucose. The glycerol conversion rates to either CO2, saponified lipids and glyceride glycerol were higher in the pregnant rat tissue than in the controls. Starvation produces a greater decline in these parameters in pregnant rat tissue than in controls. The lipolysis rate was elevated in pregnant rat tissue. The augmented glycerol utilization by adipose tissue in the mother would contribute to the net deposition of fat, despite augmented lipolysis. In the starved state the enhanced lipolysis of the mother is potenciated by a decreased reutilization of glycerol, allowing a maximal net mobilization of the fat stores.  相似文献   

7.
Fuel utilization in colonocytes of the rat.   总被引:5,自引:2,他引:3       下载免费PDF全文
In incubated colonocytes isolated from rat colons, the rates of utilization O2, glucose or glutamine were linear with respect to time for over 30 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 30 min. Glutamine, n-butyrate or ketone bodies were the only substrates that caused increases in O2 consumption by isolated incubated colonocytes. The maximum activity of hexokinase in colonic mucosa is similar to that of 6-phosphofructokinase. Starvation of the donor animal decreased the activities of hexokinase and 6-phosphofructokinase, whereas it increased those of glucose-6-phosphatase and fructose-bisphosphatase. Isolated incubated colonocytes utilized glucose at about 6.8 mumol/min per g dry wt., with lactate accounting for 83% of glucose removed. These rates were not affected by the addition of glutamine, acetoacetate or n-butyrate, and starvation of the donor animal. Isolated incubated colonocytes utilized glutamine at about 5.5 mumol/min per g dry wt., which is about 21% of the maximum activity of glutaminase. The major end-products of glutamine metabolism were glutamate, aspartate, alanine and ammonia. Starvation of the donor animal decreased the rate of glutamine utilization by colonocytes, which is accompanied by a decrease in glutamate formation and in the maximum activity of glutaminase. Isolated incubated colonocytes utilized acetoacetate at about 3.5 mumol/min per g dry wt. This rate was not markedly affected by addition of glucose or by starvation of the donor animal. When colonocytes were incubated with n-butyrate, both acetoacetate and 3-hydroxybutyrate were formed, with the latter accounting for only about 19% of total ketones produced.  相似文献   

8.
1. Neither alloxan-diabetes nor starvation affected the rate of glucose production in hepatocytes incubated with lactate, pyruvate, propionate or fructose as substrates. In contrast, glucose synthesis with either alanine or glutamine was increased nearly 3- and 12-fold respectively, in comparison with that in fed rabbits. 2. The addition of amino-oxyacetate resulted in about a 50% decrease in glucose formation from lactate in hepatocytes isolated from fed, alloxan-diabetic and starved rats, suggesting that both mitochondrial and cytosolic forms of rabbit phosphoenolpyruvate carboxykinase function actively during gluconeogenesis. 3. Alloxan-diabetes resulted in about 2-3-fold stimulation of urea production from either amino acid studied or NH4Cl as NH3 donor, whereas starvation caused a significant increase in the rate of ureogenesis only in the presence of alanine as the source of NH3. 4. As concluded from changes in the [3-hydroxybutyrate]/[acetoacetate] ratio, in hepatocytes from diabetic animals the mitochondrial redox state was shifted toward oxidation in comparison with that observed in liver cells isolated from fed rabbits.  相似文献   

9.
1. Rates of appearance and disappearance of total ketone bodies were determined in normal, starved and alloxan-diabetic rats by measuring specific radioactivities and concentrations of blood acetoacetate and 3-hydroxybutyrate at different times after injection of 3-hydroxy[(14)C]butyrate. 2. The mean rates of appearance were 1.7, 4.2 and 10.9mumoles/min./100g. body wt. respectively for normal, starved and alloxan-diabetic rats. The rates of disappearance were of the same order of magnitude as the rates of appearance. 3. There was a direct correlation between the rates of appearance and disappearance and the blood concentrations of the ketone bodies. 4. The results indicate that in the rat increased ketone-body production is paralleled by increased ketone-body utilization and that the raised ketone-body concentration in the blood in starvation and alloxan-diabetes is due to a slight imbalance between the rates of production and utilization. 5. The findings are discussed in relation to the concept that ketone bodies can serve as fuels of respiration when the supply of carbohydrate is limited.  相似文献   

10.
1. Injection of L-tryptophan (750 mg/kg body wt.) led to pronounced hypoglycaemia in fed and 48 h-starved rats. 2. The hypoglycaemic effect is blocked by pretreament with p-chlorophenylalanine, compound MK-486 [Carbidopa: L-alpha-(3,4-dihydroxybenzyl)-alpha-hydrazinopropionic acid monohydrate] or methysergide, and potentiated by pargyline. 3. 5-Hydroxy-L-tryptophan is more potent and induces a more rapid hypoglycaemia than does tryptophan. Other tryptophan metabolites were not associated with hypoglycaemia. 4. Adrenalectomy increases, and acute experimental diabetes strongly decreases, the sensitivity of rats to tryptophan induction of hypoglycaemia. Diabetic animals were also insensitive to 5-hydroxytryptophan. 5. Metabolite concentration changes in the livers from tryptophan-treated 48h-starved and diabetic animals were consistent with a rapid inhibition of gluconeogenesis. This did not correlate with the hypoglycaemic response. 6. Tryptophan treatment was associated with a significant increase in the plasma [beta-hydroxybutyrate]/[acetoacetate] ratio; there were no changes in the plasma concentrations of urea, triacyglycerol, non-esterified fatty acids and glycerol. 7. These observations suggest that the hypoglycaemic action of tryptophan is mediated through formation of intracellular 5-hydroxytryptamine, and is unrelated to the inhibition of gluconeogenesis. It is unlikely that this increased synthesis of 5-hydroxytryptamine involves directly either the adrenal glands or the central nervous system.  相似文献   

11.
ELIA, M., R. J. STUBBS, AND C. J. K. HENRY. Differences in fat, carbohydrate, and protein metabolism between lean and obese subjects undergoing total starvation. Obes Res. Despite extensive experimental studies on total starvation, many of the findings relating to protein, fat (plus ketone body), and carbohydrate metabolism remain confusing, although they become more consistent when considered in relation to the degree of initial obesity. During prolonged starvation, protein loss and percent energy derived from protein oxidation are 2- to 3-fold less in the obese than in the lean; percent urine N excreted as urea is 2-fold less in the obese; and the contribution of protein to net glucose production is only about half in the obese compared to lean subjects. During short-term starvation (first few days) the following differences are reported: hyperketonaemia is typically 2-fold greater in lean subjects, but associated with a 2-fold lower uptake of ketone bodies by forearm muscle; glucose tolerance becomes impaired more in lean subjects; and both protein turnover and leucine oxidation increase in the lean, but may show no significant change in the obese. It is no longer acceptable to describe the metabolic response to starvation as a single typical response. The differences between lean and obese subjects have important physiological implications, some of which are of obvious relevance to survival.  相似文献   

12.
Adipose tissue normally has low glycerol kinase activity, but its expression is enhanced under conditions of augmented insulin sensitivity and/or obesity. Since these conditions occur during early pregnancy, the comparative utilization of glucose or glycerol by isolated adipocytes from rats at 0, 7, 14, or 20 days of pregnancy was studied. Incubations were carried out in the presence of [U14C]-glucose or -glycerol in medium supplemented or not with 5 mM glucose and 100 nM insulin. The conversion of glucose into esterified fatty acids and glyceride glycerol was greatest in adipocytes from 7-day pregnant rats, the effect being further enhanced by insulin. Both the amount of aquoporin 7 and the in vitro conversion of glycerol into glyceride glycerol were greatest in adipocytes of 7-day pregnant rats, the later being unaltered by insulin. In the presence of glucose, the overall glycerol utilization was lower than in its absence and glycerol conversion into glyceride glycerol was further decreased by insulin, the effect only being significant in adipocytes from 7-day pregnant rats. It is proposed that the enhanced utilization of glycerol for glyceride glycerol synthesis in adipose tissue contributes to the net accumulation of fat depots that normally takes place in early pregnancy.  相似文献   

13.
The ketone bodies acetoacetate and d-3-hydroxybutyrate are found in the haemolymph, the fat body, and the flight muscles of the adult desert locust. Acetoacetate is the major ketone body in the haemolymph and the flight muscles, but in the fat body d-3-hydroxybutyrate usually predominates. The concentration of acetoacetate in the haemolymph varies with age, and increases during starvation and flight and also after the injection of corpus cardiacum homogenate; it is little affected by stress and there are no differences between the sexes. Ketone bodies appear to be formed in the fat body and are oxidized by the fat body, the flight muscles, and the testes. All the tissues oxidize acetoacetate much more readily than d-3-hydroxybutyrate, and the flight muscles of fed locusts oxidize acetoacetate much more readily than the fat body or the testes. In starved locusts the ability of the fat body and the flight muscles to oxidize ketone bodies is greatly reduced, but utilization by the testes remains normal. Thus the flight muscles appear to be the major consumers of ketone bodies in fed locusts, and the testes the major consumers in starved locusts. It is suggested that ketone bodies are formed in the fat body during the mobilization of the triglyceride lipid reserves, and are either oxidized by the fat body or transported by the haemolymph to the flight muscles and other tissues to be used as a respiratory fuel.  相似文献   

14.
Inhibition of glucose uptake by acetoacetate and relief of this inhibition by insulin found previously in slices of rat mammary gland [Williamson, McKeown & Ilic (1975) Biochem. J. 150. 145-152] was confirmed in acini, which represent a more homogeneous population of cells. Glycerol (1mM) behaved like insulin (50 minuits/ml) in its ability to relieve the inhibition of glucose (5 mM) utilization caused by acetoacetate (2 mM) in acini. Both glycerol and insulin reversed the increase in [citrate] and the decrease in [glycerol 3-phosphate] and the [lactate]/[pyruvate] ratio in the presence of acetoacetate. Lipogenesis from 3H2O, [3-14C] acetoacetate, [1-14C]- and [6-14C]-glucose was stimulated, whereas 14CO2 formation from [3-14C]acetoacetate was decreased. Neither insulin nor glycerol relieved the acetoacetate inhibition of glucose uptake when lipogenesis was inhibited by 5-(tetradecyloxy)-2-furoic acid. From measurements of [3-14C]acetoacetate incorporation into lipid in the various situations it is suggested that a cytosolic pathway for acetoacetate utilization may exist in rat mammary gland. In the absence of acetoacetate, glycerol inhibited glucose utilization by 60% and increased both [glycerol 3-phosphate] and the [lactate/[pyruvate] ratio. Possible ways in which glycerol may mimic the effects of insulin are discussed.  相似文献   

15.
Possible effects of adrenaline, noradrenaline, vasopressin, and angiotensin II to increase 14CO2 production from [1-14C]oleate were examined in hepatocytes from fed L-triiodothyronine (T3)-treated or control rats. Rates of 14CO2 production were decreased and rates of ketogenesis increased in hepatocytes from T3-treated rats. These changes were accompanied by a marked shift of the 3-hydroxybutyrate:acetoacetate concentration ratio towards acetoacetate. Rates of glucose and lactate release were decreased. Whereas the Ca2+-mobilizing hormones increased 14CO2 production from [1-14C]oleate by 64-84% with hepatocytes from control rats, they increased 14CO2 production from [1-14C]oleate by on 24-32% with hepatocytes from T3-treated rats. The magnitude of the response to the Ca2+-mobilizing hormones in hepatocytes from T3-treated rats was increased by the addition of 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, to the incubation medium (increases of 52-88%). In the presence of 3-mercaptopicolinate, the 3-hydroxybutyrate:acetoacetate concentration ratio in hepatocytes from fed, T3-treated rats was similar to that in hepatocytes from control rats in the absence of 3-mercaptopicolinate. The results demonstrate that hyperthyroidism per se does not lead to a loss of sensitivity, in terms of oleate oxidation, either to the catecholamines or to vasopressin and angiotensin II. The impaired ability of hepatocytes from T3-treated rats to respond to these hormones is a consequence of decreased net glycolytic flux or a more oxidized mitochondrial redox state.  相似文献   

16.
Effect of ketone bodies on lipolysis in adipose tissue in vitro   总被引:4,自引:0,他引:4  
Norepinephrine-sensitive lipase activity was measured in rat epididymal fat pads by determining release either of free fatty acids or of glycerol. Stimulation of the lipase activity by norepinephrine in vitro could not be duplicated by injecting norepinephrine into the rats before sacrifice. A reliable method for assay of lipase deactivation rate was developed in which the tissue is incubated for 80 min, norepinephrine is added for a further incubation of 10 min, and the decay of lipase activity is measured during the next 10 min in the absence of hormone. Of the ketone bodies tested, -hydroxybutyrate and probably acetoacetate inhibited the activation of lipase by norepinephrine but had no effect on lipase deactivation rate, whereas acetone increased lipase activity stimulated by norepinephrine when tested at the concentration at which acetoacetate gave an inhibition. Substances other than -hydroxybutyrate that produce reduced nucleotides-alpha-glycerophosphate, malate, and ethanol-had no effect on lipase activity as tested in the present system.  相似文献   

17.
The kinetics of acetoacetate (A) and beta-hydroxybutyrate (B) have been studied following the injection as a pulse or continued infusion of [3-14C]acetoacetate (A*) or [14C]beta-hydroxybutyrate (B*) into six newly diagnosed, untreated, ketotic diabetic patients, ten obese subjects in the postabsorptive state, and the ten obese subjects after 1-2 weeks starvation (50 cal per day). Employing a compartmental model of acetoacetate and beta-hydroxybutyrate kinetics developed using CONSAM for normal subjects, the rate coefficients (Lij), rates of release of newly synthesized acetoacetate and beta-hydroxybutyrate into the blood (UA, UB), and fractional removal of each compound (FCRA and FCRB) were calculated. Ketone body release into blood (UA + UB) in diabetic subjects was threefold higher than normal (mean +/- SD, 208 +/- 118 versus 81 +/- 66 mumol min-1 m-2) and in obese subjects the rate increased on starvation from 171 +/- 70 to 569 +/- 286 mumol min-1 m-2. In each case most of the increase was in beta-hydroxybutyrate. The major change in diabetes and on starvation of the obese subjects was in the rate coefficient for removal of ketone bodies. Normally 0.168 +/- 0.109 min-1, it was 0.055 +/- 0.040 min-1 in the diabetic patients and fell from 0.066 +/- 0.040 to 0.027 +/- 0.019 min-1 in the obese subjects on starvation. In normal subjects, FCRA was similar to FCRB (0.226 +/- 0.142 versus 0.188 +/- 0.124 min-1). However, in diabetics, FCRA was 0.074 +/- 0.044 and FCRB was 0.050 +/- 0.034 min-1 and both were lower than normal. On starvation of obese subjects, FCRA fell from 0.199 +/- 0.047 to 0.089 +/- 0.035 min-1, whereas FCRB fell from 0.141 +/- 0.040 to 0.033 +/- 0.012 min-1. Therefore, the removal of beta-hydroxybutyrate was impaired more than that of acetoacetate in all patients. Our results confirm previous observations that ketosis is associated with high rates of ketogenesis and a decrease in fractional clearance. In addition, we found that in diabetes, obesity, and in obese subjects following starvation, most of the increased synthesis was in beta-hydroxybutyrate and that the clearance of beta-hydroxybutyrate decreased more than that of acetoacetate.  相似文献   

18.
1. In 48 h-starved 6-week-old rats the 14C incorporation in vivo into blood glucose from a constant-specific-radioactivity pool of circulating [14c]actateconfirmed that lactate is the preferred gluconeogenic substrate. 2. Increasing the blood [alanine] to that occurrring in the fed state increased 14C incorporation into blood glucose 2.3-fold from [14c]alanine and 1.7-fold from [14c]lactate. 3. When the blood [alanine] was increased to that in the fed state, the 14C incorporation into liver glycogen from circulating [14c]alanine or [14c]lactate increased 13.5- and 1.7-fold respectively. 4. The incorporation of 14C into blood acetoacetate and 3-hydroxybutyrate from a constant-specific-radioactivity pool of circulating [14c]oleate was virtually abolished by increasing the blood [alanine] to that existing in the fed state. However, the [acetoacetate] remained unchanged, whereas [3-hydroxybutyrate] decreased, although less rapidly than did its radiochemical concentration. 5. It is concluded that during starvation in 6-week-old rats, the blood [alanine] appears to influence ketogenesis for circulating unesterfied fatty acids and inversely affects gluconeogenesis from either lactate or alanine. A different pattern of gluconeogenesis may exist for alanine and lactate as evidenced by comparative 14C incorporation into liver glycogen and blood glucose.  相似文献   

19.
Fat mobilization was studied in vitro with epididymal fat pad tissue and also with cell suspensions from epididymal, retroperitoneal, and subcutaneous fat from the obese mutant "fatty" (fafa) and control rats of four different ages. Fat mobilization per cell in response to epinephrine was well above normal in young "fatties"; in older "fatties" the output per cell fell to near normal, but the much greater number of fat cells per rat indicated that the fat mobilizing capacity of the older "fatty" is well above normal. The "fatty" showed normal reactions to epinephrine in vivo: hyperglycemia, glycogenolysis, lipolysis with elevated free fatty acids and glycerol, and increased entry of free fatty acids into muscle and liver. Response was at least as great in "fatty" as in control animals. Metabolic indices-levels of circulating free fatty acids, glycerol, and in some cases glucose and lipid-determined at various ages in fed "fatties" and controls, and at intervals during prolonged fasting (70 days), were consistent with a picture of excessive adipose tissue lipolysis, excessive reesterification in the adipose tissue, fat mobilization in excess of need, and return of the excess to the adipose tissue via lipoproteins.  相似文献   

20.
In renal tubules isolated from fed rabbits glycerol is not utilized as a glucose precursor, probably due to the rate-limiting transfer of reducing equivalents from cytosol to mitochondria. Pyruvate and glutamate stimulated an incorporation of [14C]glycerol to glucose by 50- and 10-fold, respectively, indicating that glycerol is utilized as a gluconeogenic substrate under these conditions. Glycerol at concentration of 1.5 mM resulted in an acceleration of both glucose formation and incorporation of [14C]pyruvate and [14C]glutamate into glucose by 2- and 9-fold, respectively, while it decreased the rates of these processes from lactate as a substrate. In the presence of fructose, glycerol decreased the ATP level, limiting the rate of fructose phosphorylation and glucose synthesis. As concluded from the 'cross-over' plots, the ratios of both 3-hydroxybutyrate/acetoacetate and glycerol 3-phosphate/dihydroxyacetone phosphate, as well as from experiments performed with methylene blue and acetoacetate, the stimulatory effect of glycerol on glucose formation from pyruvate and glutamate may result from an acceleration of fluxes through the first steps of gluconeogenesis as well as glyceraldehyde-3-phosphate dehydrogenase. As inhibition by glycerol of gluconeogenesis from lactate is probably due to a marked elevation of the cytosolic NADH/NAD+ ratio resulting in a decline of flux through lactate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号