首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The songs of adult male zebra finches (Taeniopygia guttata) arise by an integration of activity from two neural pathways that emanate from the telencephalic nucleus HVC (proper name). One pathway descends directly from HVC to the vocal premotor nucleus RA (the robust nucleus of the arcopallium) whereas a second pathway descends from HVC into a basal ganglia circuit (the anterior forebrain pathway, AFP) that also terminates in RA. Although HVC neurons that project directly to RA outnumber those that contribute to the AFP, both populations are distributed throughout HVC. Thus, partial ablation (microlesion) of HVC should damage both pathways in a proportional manner. We report here that bilateral HVC microlesions in adult male zebra finches produce an immediate loss of song stereotypy from which birds recover, in some cases within 3 days. The contribution of the AFP to the onset of song destabilization was tested by ablating the output nucleus of this circuit (LMAN, the lateral magnocellular nucleus of the anterior nidopallium) prior to bilateral HVC microlesions. Song stereotypy was largely unaffected. Together, our findings suggest that adult vocal production involves nonproportional integration of two streams of neural activity with opposing effects on song--HVC's direct projection to RA underlies production of stereotyped song whereas the AFP seems to facilitate vocal variation. However, the rapid recovery of song in birds with HVC microlesions alone suggests the presence of dynamic corrective mechanisms that favor vocal stereotypy.  相似文献   

2.
《Journal of Physiology》2013,107(3):178-192
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.  相似文献   

3.
Neurons in nuclei on the motor pathway for vocalizations in songbirds are known to responses in one such nucleus, robustus archistriatalis (RA), were characterized by making multi-unit recordings in awake and anesthetized adult male zebra finches and in birds that had received lesions of the input to RA from the lateral part of the magnocellular nucleus of the anterior neostriatum (LMAN) or the Higher Vocal Center (HVC). In awake birds, RA neurons have a high level of spontaneous activity and vigorous auditory responses to song stimuli. Significantly greater responses are seen to the bird's own song (BOS) than to BOS played in reverse (REV) or to the songs of conspecifics (CON). Under ketamine-xylazine anesthesia, spontaneous activity is reduced, response latency increases and responses to BOS, REV and CON are indistinguishable. Responses obtained under urethane anesthesia are similar to those seen in awake birds. Thus, the pattern and selectivity of auditory responses in RA depend on the animal's state. Auditory responses in RA are qualitatively unchanged following lesion of the input to RA from LMAN, indicating that this pathway is not required for the sensory processing that underlies the preference for BOS on the vocal production pathway. Our results show that an input other than that from LMAN must be primarily responsible for auditory responses in RA. The direct projection form HVC is the most likely pathway by which song selective auditory information arrives in RA, since lesioning HVC abolished auditory responses in RA. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Birdsong is a learned vocal behavior used in intraspecific communication. The motor pathway serving learned vocalizations includes the forebrain nuclei NIf, HVC, and RA; RA projects to midbrain and brain stem areas that control the temporal and acoustic features of song. Nucleus Uvaeformis of the thalamus (Uva) sends input to two of these forebrain nuclei (NIf and HVC) but has not been thought to be important for song production. We used three experimental approaches to reexamine Uva's function in adult male zebra finches. (1) Electrical stimulation applied to Uva activated HVC and the vocal motor pathway, including tracheosyringeal motor neurons that innervate the bird's vocal organ. (2) Bilateral lesions of Uva including the dorso-medial portion of the nucleus affected the normal temporal organization of song. (3) Chronic multiunit recordings from Uva during normal song and calls show bursts of premotor activity that lead the onset of some song components, and also larger bursts that mark the end of complete song motifs. These results implicate Uva in the production of learned vocalizations, and further suggest that Uva contributes more to the temporal structure than to the acoustic characteristics of song. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
It is well established that auditory forebrain regions of oscine birds are essential for the encoding of species‐typical songs and are, therefore, vital for recognition of song during sociosexual interactions. Regions such as the caudal medial nidopallium (NCM) and the caudal medial mesopallium (CMM) are involved in perceptual processing of song and the formation of auditory memories. There is an additional telencephalic nucleus, however, that has also been implicated in species recognition. This nucleus is HVC, a prominent nucleus that sits at the apex of the song system, and is well known for its critical role in song learning and song production in male songbirds. Here, we explore the functional relationship between auditory forebrain regions (i.e., NCM and CMM) and HVC in female canaries (Serinus canaria). We lesion HVC and examine immediate early gene responses to conspecific song presentation within CMM and NCM to explore whether HVC can modulate auditory responses within these forebrain regions. Our results reveal robust deficits in ZENK‐ir in CMM and NCM of HVC‐lesioned females when compared with control‐ and sham‐lesioned females, indicating that functional connections exists between HVC and NCM/CMM. Although these connected regions have been implicated in song learning and production in males, they likely serve distinct functions in female songbirds that face the task of song recognition rather than song production. Identifying functional connections between HVC and auditory regions involved in song perception is an essential step toward developing a comprehensive understanding of the neural basis of song recognition. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

6.
In some songbirds perturbing auditory feedback can promote changes in song structure well beyond the end of song learning. One factor that may drive vocal change in such deafened birds is the ongoing addition of new vocal-motor neurons into the song system. Without auditory feedback to guide their incorporation, the addition of these new neurons could disrupt the established song pattern. To assess this hypothesis, the authors determined if neuronal recruitment into the vocal motor nucleus HVC is affected by neural signals that influence vocal change in adult deafened birds. Such signals appear to be conveyed via LMAN, a nucleus in the anterior forebrain that is necessary for vocal change after deafening. Here the authors tested whether LMAN lesions might restrict song degradation after deafening by reducing the addition or survival of new HVC neurons that would otherwise corrupt the ongoing song pattern. Using [3H]thymidine autoradiography to identify neurons generated in adult zebra finches, it was shown here that LMAN lesions do not reduce the number or percent of new HVC neurons surviving for either several weeks or months after [3H]thymidine labeling. However, the authors confirmed previous reports that LMAN lesions restrict vocal change after deafening. These data suggest that neurons incorporated into the adult HVC may form behaviorally adaptive connections without requiring auditory feedback, and that any role such neurons may play in promoting vocal change after adult deafening requires anterior forebrain pathway output.  相似文献   

7.
Large morphological sex differences in the vertebrate brain were initially identified in song control nuclei of oscines. Besides gross differences between volumes of nuclei in males and females, sex differences also concern the size and dendritic arborization of neurons and various neurochemical markers, such as the calcium-binding protein parvalbumin (PV). Perineuronal nets (PNN) of the extracellular matrix are aggregates of different compounds, mainly chondroitin sulfate proteoglycans, that surround subsets of neurons, often expressing PV. PNN develop in zebra finches song control nuclei around the end of the sensitive period for song learning and tutor deprivation, known to delay the end of the song learning sensitive period, decreases the numbers of PNN in HVC. We demonstrate here the existence in zebra finches of a major sex difference (males > females) affecting the number of PNN (especially those surrounding PV-positive cells) in HVC and to a smaller extent the robust nucleus of the arcopallium, RA, the two main nuclei controlling song production. These differences were not present in Area X and LMAN, the lateral magnocellular nucleus of the anterior nidopallium. A dense expression of material immunoreactive for chondroitin sulfate was also detected in several nuclei of the auditory and visual pathways. This material was often organized in perineuronal rings but quantification of these PNN did not reveal any sex difference with the exception that the percentage of PNN surrounding PV-ir cells in the dorsal lateral mesencephalic nucleus, MLd, was larger in females than in males, a sex difference in the opposite direction compared to what is seen in HVC and RA. These data confirm and extend previous studies demonstrating the sex difference affecting PNN in HVC-RA by showing that this sex difference is anatomically specific and does not concern visual or auditory pathways.  相似文献   

8.
The distribution of acetylcholinesterase (AChE) in the central vocal control nuclei of the zebra finch was studied using enzyme histochemistry. AChE fibres and cells are intensely labelled in the forebrain nucleus area X, strongly labelled in high vocal centre (HVC) perikarya, and moderately to lightly labelled in the somata and neuropil of vocal control nuclei robust nucleus of arcopallium (RA), medial magnocellular nucleus of the anterior nidopallium (MMAN) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The identified sites of cholinergic and/or cholinoceptive neurons are similar to the cholinergic presence in vocal control regions of other songbirds such as the song sparrow, starling and another genus of the zebra finch (Poephila guttata), and to a certain extent in parallel vocal control regions in vocalizing birds such as the budgerigar. AChE presence in the vocal control system suggests innervation by either afferent projecting cholinergic systems and/or local circuit cholinergic neurons. Co-occurrence with choline acetyltransferase (ChAT) indicates efferent cholinergic projections. The cholinergic presence in parts of the zebra finch vocal control system, such as the area X, that is also intricately wired with parts of the basal ganglia, the descending fibre tracts and brain stem nuclei could underlie this circuitry’s involvement in sensory processing and motor control of song.  相似文献   

9.
Shea SD  Margoliash D 《Neuron》2003,40(6):1213-1226
The cholinergic basis of auditory "gating" in the sensorimotor nucleus HVc and its efferent target robustus archistriatalis (RA) was investigated in anesthetized zebra finches. Injections of cholinergic agonists carbachol or muscarine into HVc strongly affected discharge rates and diminished auditory responsiveness in both HVc and its target RA, changes toward an awake-like condition. HVc nicotine injections produced similar strong effects in HVc, but weaker and inconsistent effects in RA. Stimulation of basal forebrain (BF) produced an initial transient network shutdown followed by diminished auditory responsiveness in HVc and RA. All stimulation effects were blocked when preceded by HVc injections of nicotinic or muscarinic antagonists. Thus, BF cholinergic modulation of song system auditory activity acting via functionally distinct HVc circuits can contribute to auditory gating. We hypothesize that wakeful BF activity levels block sensory input to motor systems and adaptively change during behavior to allow sensorimotor feedback such as auditory feedback during singing.  相似文献   

10.
Like many other songbird species, male zebra finches learn their song from a tutor early in life. Song learning in birds has strong parallels with speech acquisition in human infants at both the behavioral and neural levels. Forebrain nuclei in the 'song system' are important for the sensorimotor acquisition and production of song, while caudomedial pallial brain regions outside the song system are thought to contain the neural substrate of tutor song memory. Here, we exposed three groups of adult zebra finch males to either tutor song, to their own song, or to novel conspecific song. Expression of the immediate early gene protein product Zenk was measured in the song system nuclei HVC, robust nucleus of the arcopallium (RA) and Area X. There were no significant differences in overall Zenk expression between the three groups. However, Zenk expression in the HVC was significantly positively correlated with the strength of song learning only in the group that was exposed to the bird's own song, not in the other two groups. These results suggest that the song system nucleus HVC may contain a neural representation of a memory of the bird's own song. Such a representation may be formed during juvenile song learning and guide the bird's vocal output.  相似文献   

11.
成年雄性鸣禽的习得性发声信号——长鸣(long call)和鸣唱(song)是由前脑高级发声中枢启动,以及由前脑最后一级输出核团弓状皮质栎核(robust nucleus of the arcopallium,RA)整合输出.RA投射神经元与位于中脑的基本发声中枢丘间复合体背内侧核(dorsomedial nucleus of the intercollicular,DM)形成突触连接.该文采用电损毁与声谱分析相结合的方法,通过依次损毁成年雄性斑胸草雀(Taeniopygia guttata)单侧RA和DM核团,探讨了前脑和中脑对习得性发声的影响.结果提示,RA核团与DM核团共同参与了对雄性斑胸草雀习得性声音的调控,而且这种控制具有右侧优势.  相似文献   

12.
Birdsong is a learned behavior that is controlled by a group of identified nuclei, known collectively as the song system. The cortical nucleus HVC (used as a proper name) is a focal point of many investigations as it is necessary for song production, song learning, and receives selective auditory information. HVC receives input from several sources including the cortical area MMAN (medial magnocellular nucleus of the nidopallium). The MMAN to HVC connection is particularly interesting as it provides potential sensorimotor feedback to HVC. To begin to understand the role of this connection, we investigated the physiological relation between MMAN and HVC activity with simultaneous multiunit extracellular recordings from these two nuclei in urethane anesthetized zebra finches. As previously reported, we found similar timing in spontaneous bursts of activity in MMAN and HVC. Like HVC, MMAN responds to auditory playback of the bird's own song (BOS), but had little response to reversed BOS or conspecific song. Stimulation of MMAN resulted in evoked activity in HVC, indicating functional excitation from MMAN to HVC. However, inactivation of MMAN resulted in no consistent change in auditory responses in HVC. Taken together, these results indicate that MMAN provides functional excitatory input to HVC but does not provide significant auditory input to HVC in anesthetized animals. We hypothesize that MMAN may play a role in motor reinforcement or coordination, or may provide modulatory input to the song system about the internal state of the animal as it receives input from the hypothalamus.  相似文献   

13.
鸣禽鸣唱控制系统的前端脑通路(anterior forebrain pathway, AFP)在鸣唱学习中发挥着重要作用。新纹状体巨细胞核外侧部(lateral magnocellular nucleus of the anterior neostriatum, LMAN)是AFP的最后一级输出核团,AFP中的信号通过LMAN传导到弓状皮质栎核(robust nucleus of the arcopallium, RA),与高级发声中枢(high vocal centre,HVC)共同调节RA的活动,从而影响鸣禽的发声行为。LMAN可能通过其与RA的单突触连接来影响鸣唱可塑性。文章对近年来LMAN在鸣唱学习可塑性方面的研究进行综述。  相似文献   

14.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

15.
10种鸣禽控制鸣啭神经核团大小与鸣唱复杂性的相关性   总被引:8,自引:0,他引:8  
为进一步揭示鸣禽鸣唱行为的神经生物学机制 ,本实验先对 8个科 10种鸣禽的鸣唱行为进行了观察和录音 ,并借助声谱软件分析了每种鸣禽的鸣唱复杂性。鸣唱语句复杂性的评价指标包括 :短语总数、每个短语中所含的平均音节数及音节种类数、所有短语的总音节数及音节种类数、最长短语的音节数及音节种类数。然后 ,测定了前脑三个鸣啭学习控制核团和一个与发声无关的视觉参考核团体积 ,分析了鸣唱语句复杂性和这些核团大小间的相关关系。结果表明 :1)HVC和HVC/Rt与 7种鸣唱语句复杂性指标无关 ;RA和RA/Rt与总音节种类数相关 ;AreaX与总音节数及音节种类数相关 ;2 )HVC/RA和HVC/X比值与多个鸣唱语句复杂性指标相关。结果提示 :鸣禽鸣唱复杂性不同特征可能受不同神经控制  相似文献   

16.
Songbirds are an important model system for the study of the neurological bases of song learning, but variation in song learning accuracy and adult song complexity remains poorly understood. Current models of sexual selection predict that signals such as song must be costly to develop or maintain to constitute honest indicators of male quality. It has been proposed that reductions of nestling condition during song development might limit the expression of song learning. Adult song could thus act as an indicator of early stress as only males that enjoy good condition during development could learn accurately and sing long songs or large repertoires. We tested this hypothesis in the zebra finch by modifying early condition through cross-fostering chicks to small, medium, and large broods. Song learning was very accurate and was found to reflect very closely tutor song characteristics and to depend on the number of males in the tutoring group. Although the brood size manipulation strongly affected several measures of nestling condition and adult biometry, we found no relationship between early condition and song learning scores or song characteristics. Similarly, brain mass and high vocal center (HVC), robust nucleus of the arcopallium (RA), and lateral magnocellular nucleus of the anterior nidopallium (LMAN) volumes did not covary with nestling condition and growth measurements. We found no significant relationship between song repertoire size and HVC and RA volumes, although there was a nonsignificant trend for HVC to increase with increasing proportion of learnt elements in a song. In conclusion, the results provide no evidence for song learning to be limited by nestling condition during the period of nutritional dependence from the parents in this species.  相似文献   

17.
The song system of zebra finches is sexually dimorphic: the volumes of the song control nuclei and the neurons within these nuclei are larger in males. The song system of hatching female zebra finches is masculinized by systemic treatment with estrogen. We investigated the locus of this estrogen action by using microimplants of estradiol benzoate (EB). We implanted female zebra finch nestlings 10–13 days old with Silastic pellets containing approximately 2 μg EB at one of several sites: near the higher vocal center (HVC), in the brain distant from HVC, or in the periphery either under the skin of the breast or in the peritoneal cavity. Controls were either unimplanted or implanted near HVC with Silastic pellets without hormone. The brains were fixed by perfusion at 60 days, and the volumes of the song control regions as well as the sizes of individual neurons were measured. Neurons in HVC were lerger (more masculine) in the HVC-implanted group than in other groups, which did not differ among themselves. The size of neurons in the robust nucleus of the archistriatum (RA) and the lateral magnocellular nucleus ofthe neostriatum (lMAN) were inversely correlated with the distance of the EB pellet to HVC; neurons in RA and lMAN were larger when the EB pellets were closer to HVC. This result suggests that implants near HVC were at or near a site of estrogen action. To our knowledge, this is the first demonstration that localized brain implants of estrogen cause morphological masculinization in any species. 1994 John Wiley & Sons, Inc.  相似文献   

18.
用组织学技术和微机处理方法研究了春秋两季雄性成年鸣禽栗鹂前脑鸣啭相关核团体积与性腺体积之间的相关性。结果表明,与鸣啭控制直接相关的核团HVC、RA以及在鸣啭学习中具有重要作用的X区体积均随睾丸体积变化而发生显著的正相关性变化,而与发声无关的对照核团则没有这种相关性。  相似文献   

19.
Meng W  Wang XD  Xiao P  Li DF 《生理学报》2006,58(3):232-236
鸣禽高级发声中枢(high vocal center,HVC)至弓状皮质栎核(robust nucleus ofthe arcopallium,RA)的突触传递是鸣唱运动通路中的关键部分.本文运用在体场电位电生理记录的方法,研究了成年雄性斑胸草雀(Taeniopygia guttata)HVC-RA突触的电生理特性.实验结果显示,刺激HVC,在RA内所记录到的诱发场电位幅度较小.配对脉冲检测发现,HVC-RA突触传递具有明显的配对脉冲易化特性.当以强直刺激作用于HVC,RA内诱发场电位随即显著减小,并在15 min内逐渐恢复,表明HVC-RA突触传递在强直刺激过后出现了短时抑制.该通路的突触传递特性可能与其在发声控制中的作用有关.以上的实验结果为进一步研究发声运动过程中的突触可塑性提供了资料.  相似文献   

20.
Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)—a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub‐song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213–1225, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号