首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
African trypanosomes of the Trypanosoma brucei group are agents of disease in man and animals. They present unique biochemical characteristics such as the need for preformed purines and have extensive salvage mechanisms for nucleoside recovery. In this regard we have shown that trypanosomes have a dedicated transporter for S-adenosylmethionine (AdoMet), a key metabolite in transmethylation reactions and polyamine synthesis. In this study we compared the apparent kinetics of AdoMet transport, cytosolic AdoMet pool formation, and utilization of AdoMet in protein methylation reactions using two isolates: Trypanosoma brucei brucei, a veterinary parasite, and Trypanosoma brucei rhodesiense, a human pathogen that is highly refractory and has greatly reduced susceptibility to standard trypanocidal agents active against T. b. brucei. The apparent Km values for [methyl-3H]AdoMet transport, derived by Hanes-Woolf analysis, for T. b. brucei was 4.2 and 10 mM for T. b. rhodesiense, and the Vmax values were 124 and 400 micromol/liter/min, respectively. Both strains formed substantial cytosolic pools of AdoMet, 1600 nmol/10(9) T. b. brucei and 3500 nmol/10(9) T. b. rhodesiense after 10 min incubation with 25 mM exogenous AdoMet. Data obtained from washed trichloroacetic acid precipitates of cells incubated with [methyl-3H]AdoMet indicated that the rate of protein methylation in T. b. brucei was fourfold greater than in T. b. rhodesiense. These results demonstrate that the unique rapid uptake and utilization of AdoMet by African trypanosomes is an important consideration in the design and development of new agents of potential use in chemotherapy.  相似文献   

2.
The presence of nonvariant antigens (NVAs) limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense was demonstrated for the first time by immunodiffusion and immunoelectrophoresis. Noncloned and cloned populations were employed in preparation of polyclonal antisera in rabbits and of antigens to be used in the immunologic reactions. The NVAs could be shown best in systems in which hyperimmune rabbit sera (adsorbed with procyclic forms to eliminate antibodies against antigens common to bloodstream form and procyclic stages) were reacted with trypanosomes characterized by heterologous variant-specific antigens (VSAs). The NVAs demonstrated in this study are very likely different from the common parts of VSAs. As has been suggested by experiments with living trypanosomes, at least a part of the NVAs appears to be located on the surface of the bloodstream forms. In these experiments involving the quantitative indirect fluorescent antibody test, the amount of fluorescence recorded for the heterologous system, i.e. ETat 5 trypanosomes incubated with anti-AmTat 1.1 serum, equalled approximately 3.0% of the fluorescence emitted by the AmTat 1.1 bloodstream forms treated with their homologous antiserum. Evidently, only small amounts of NVAs are present on the surfaces of T. brucei bloodstream forms. In addition to the NVAs, the electrophoresis results suggested the presence of antigenic differences between procyclic stages belonging to different T. brucei stocks.  相似文献   

3.
ABSTRACT. The presence of nonvariant antigens (NVAs) limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense was demonstrated for the first time by immunodiffusion and Immunoelectrophoresis. Noncloned and cloned populations were employed in preparation of polyclonal antisera in rabbits and of antigens to be used in the immunologic reactions. The NVAs could be shown best in systems in which hyperimmune rabbit sera (adsorbed with procyclic forms to eliminate antibodies against antigens common to bloodstream form and procyclic stages) were reacted with trypanosomes characterized by heterologous variant-specific antigens (VSAs). The NVAs demonstrated in this study are very likely different from the common parts of VSAs. As has been suggested by experiments with living trypanosomes, at least a part of the NVAs appears to be located on the surface of the bloodstream forms. In these experiments involving the quantitative indirect fluorescent antibody test, the amount of fluorescence recorded for the heterologous system, i.e. ETat 5 trypanosomes incubated with anti-AmTat 1.1 serum, equalled ~3.0% of the fluorescence emitted by the AmTat 1.1 bloodstream forms treated with their homologous antiserum. Evidently, only small amounts of NVAs are present on the surfaces of T. brucei bloodstream forms. In addition to the NVAs, the electrophoresis results suggested the presence of antigenic differences between procyclic stages belonging to different T. brucei stocks.  相似文献   

4.
5.

Background

Trypanosoma brucei is a eukaryotic pathogen which causes African trypanosomiasis. It is notable for its variant surface glycoprotein (VSG) coat, which undergoes antigenic variation enabled by a large suite of VSG pseudogenes, allowing for persistent evasion of host adaptive immunity. While Trypanosoma brucei rhodesiense (Tbr) and T. b gambiense (Tbg) are human infective, related T. b. brucei (Tbb) is cleared by human sera. A single gene, the Serum Resistance Associated (SRA) gene, confers Tbr its human infectivity phenotype. Potential genetic recombination of this gene between Tbr and non-human infective Tbb strains has significant epidemiological consequences for Human African Trypanosomiasis outbreaks.

Results

Using long and short read whole genome sequencing, we generated a hybrid de novo assembly of a Tbr strain, producing 4,210 scaffolds totaling approximately 38.8 megabases, which comprise a significant proportion of the Tbr genome, and thus represents a valuable tool for a comparative genomics analyses among human and non-human infective T. brucei and future complete genome assembly. We detected 5,970 putative genes, of which two, an alcohol oxidoreductase and a pentatricopeptide repeat-containing protein, were members of gene families common to all T. brucei subspecies, but variants specific to the Tbr strain sequenced in this study. Our findings confirmed the extremely high level of genomic similarity between the two parasite subspecies found in other studies.

Conclusions

We confirm at the whole genome level high similarity between the two Tbb and Tbr strains studied. The discovery of extremely minor genomic differentiation between Tbb and Tbr suggests that the transference of the SRA gene via genetic recombination could potentially result in novel human infective strains, thus all genetic backgrounds of T. brucei should be considered potentially human infective in regions where Tbr is prevalent.  相似文献   

6.
African trypanosomes infect a broad range of mammals, but humans and some higher primates are protected by serum trypanosome lytic factors that contain apolipoprotein L1 (ApoL1). In the human‐infective subspecies of Trypanosoma brucei, Trypanosoma brucei rhodesiense, a gene product derived from the variant surface glycoprotein gene family member, serum resistance‐associated protein (SRA protein), protects against ApoL1‐mediated lysis. Protection against trypanosome lytic factor requires the direct interaction between SRA protein and ApoL1 within the endocytic apparatus of the trypanosome, but some uncertainty remains as to the precise mechanism and location of this interaction. In order to provide more insight into the mechanism of SRA‐mediated resistance to trypanosome lytic factor, we assessed the localization of SRA in T. b. rhodesiense EATRO3 using a novel monoclonal antibody raised against SRA together with a set of well‐characterized endosomal markers. By three‐dimensional deconvolved immunofluorescence single‐cell analysis, combined with double‐labelling immunoelectron microscopy, we found that ≈ 50% of SRA protein localized to the lysosome, with the remaining population being distributed through the endocytic pathway, but apparently absent from the flagellar pocket membrane. These data suggest that the SRA/trypanolytic factor interaction is intracellular, with the concentration within the endosomes potentially crucial for ensuring a high efficiency.  相似文献   

7.
Apoptosis is a phenomenon previously associated exclusively with metazoan organisms. We show here that procyclic insect form Trypanosoma brucei rhodesiense, a protozoan parasite, when treated in vitro with concanavalin A displayed several features normally associated with apoptosis in metazoan cells. Lectin treatment induced cleavage of nuclear DNA into oligonucleosomal fragments, suggesting activation of an endogenous nuclease in the parasite. Treated trypanosomes, although agglutinated and non-motile, exhibited fluorescence after treatment with the vital stain fluorescein diacetate and retained (3)H-uridine indicating that their cell membranes remained intact during the period of DNA fragmentation. Electron micrographs showed characteristic morphology of cells undergoing apoptosis, including surface membrane vesiculation and migration of chromatin to the periphery of the nuclear membrane while mitochondria remained intact. These results suggest that treatment with concanavalin A triggers a cell death mechanism in T. b. rhodesiense similar to the process of apoptosis described in metazoa.  相似文献   

8.
9.
10.
Background Human African trypanosomiasis is associated with metabolic changes which have not been well characterized. Methods Chlorocebus aethiops were experimentally infected with Trypanosoma brucei rhodesiense and late‐stage disease induced at 28 days post‐infection. Ear prick blood for glucose determination and blood samples were obtained at weekly intervals for 56 days. Analysis was carried out using dry chemistry analysis. Results In early infection, there was a significant increase in creatine kinase, while during early and transitional stage of infection there was a significant decrease in glucose and high‐density lipoprotein and an increase in triglyceride levels. In the late stage, there was a significant increase in both total cholesterol and LDL levels. Conclusions Further investigations should focus on levels of total cholesterol during the follow‐up period in curatively treated vervet monkeys. Apart from their importance in disease staging, the changes in lipids levels may also affect the pharmacokinetics of some trypanocides.  相似文献   

11.
Resistance to melarsoprol and pentamidine was induced in bloodstream-form Trypanosoma brucei rhodesiense STIB 900 in vitro, and drug sensitivity was determined for melarsoprol, pentamidine and furamidine. The resistant populations were also inoculated into immunosuppressed mice to verify infectivity and to monitor whether rodent passage selects for clones with altered drug sensitivity. After proliferation in the mouse, trypanosomes were isolated and their IC(50) values to the three drugs were determined. To assess the stability of drug-induced resistance, drug pressure was ceased for 2 months and the drug sensitivity was determined again. Resistance was stable, with a few exceptions that are discussed. Drug IC(50)s indicated cross-resistance among all drugs, but to varying extents: resistance of the melarsoprol-selected and pentamidine-selected trypanosomes to pentamidine was the same, but the pentamidine-selected trypanosome population showed lower resistance to melarsoprol than the melarsoprol-selected trypanosomes. Interestingly, both resistant populations revealed the same intermediate cross-resistance to furamidine. Resistant trypanosome populations were characterised by molecular means, referring to the status of the TbAT1 gene. The melarsoprol-selected population apparently had lost TbAT1, whereas in the pentamidine-selected trypanosome population it was still present.  相似文献   

12.

Background

Diverse clinical features have been reported in human African trypanosomiasis (HAT) foci caused by Trypanosoma brucei rhodesiense (T.b.rhodesiense) giving rise to the hypothesis that HAT manifests as a chronic disease in South-East African countries and increased in virulence towards the North. Such variation in disease severity suggests there are differences in host susceptibility to trypanosome infection and/or genetic variation in trypanosome virulence. Our molecular tools allow us to study the role of host and parasite genotypes, but obtaining matched extensive clinical data from a large cohort of HAT patients has previously proved problematic.

Methods/Principal Findings

We present a retrospective cohort study providing detailed clinical profiles of 275 HAT patients recruited in two northern foci (Uganda) and one southern focus (Malawi) in East Africa. Characteristic clinical signs and symptoms of T.b.rhodesiense infection were recorded and the degree of neurological dysfunction determined on admission. Clinical observations were mapped by patient estimated post-infection time. We have identified common presenting symptoms in T.b.rhodesiense infection; however, marked differences in disease progression and severity were identified between foci. HAT was characterised as a chronic haemo-lymphatic stage infection in Malawi, and as an acute disease with marked neurological impairment in Uganda. Within Uganda, a more rapid progression to meningo-encephaltic stage of infection was observed in one focus (Soroti) where HAT was characterised by early onset neurodysfunction; however, severe neuropathology was more frequently observed in patients in a second focus (Tororo).

Conclusions/Significance

We have established focus-specific HAT clinical phenotypes showing dramatic variations in disease severity and rate of stage progression both between northern and southern East African foci and between Ugandan foci. Understanding the contribution of host and parasite factors in causing such clinical diversity in T.b.rhodesiense HAT has much relevance for both improvement of disease management and the identification of new drug therapy.  相似文献   

13.
Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

14.

Background

The only available diagnostic method for East African trypanosomiasis is light microscopy of blood samples. A simple immunodiagnostic would greatly aid trypanosomiasis control.

Methodology and Principal Findings

To find trypanosome proteins that are specifically recognised by sera from human sleeping sickness patients, we have screened the Trypanosoma brucei brucei proteome by Western blotting. Using cytosolic, cytoskeletal and glycosomal fractions, we found that the vast majority of abundant trypanosome proteins is not specifically recognised by patient sera. We identified phosphoglycerate kinase (PGKC), heat shock protein (HSP70), and histones H2B and H3 as possible candidate diagnostic antigens. These proteins, plus paraflagellar rod protein 1, rhodesain (a cysteine protease), and an extracellular fragment of the Trypanosoma brucei nucleoside transporter TbNT10, were expressed in E. coli and tested for reactivity with patient and control sera. Only TbHSP70 was preferentially recognized by patient sera, but the sensitivity and specificity were insufficient for use of TbHSP70 alone as a diagnostic. Immunoprecipitation using a native protein extract revealed no specifically reacting proteins.

Conclusions

No abundant T. brucei soluble, glycosomal or cytoskeletal protein is likely to be useful in diagnosis. To find useful diagnostic antigens it will therefore be necessary to use more sophisticated proteomic methods, or to test a very large panel of candidate proteins.  相似文献   

15.
SYNOPSIS. Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

16.
Bipyramidal crystals of the recombinant calmodulin from Trypanosoma brucei rhodesiense were obtained by vapor diffusion against 55% (v/v) 2-methyl-2,4-pentanediol in 0.05 M cacodylate buffer, pH 5.6. When few nucleation events occurred, crystals grew to 0.25 × 0.25 × 1.20 mm. The space group of the crystal is I4122, with unit cell dimensions a = b = 56.88 Å, c = 230.11 Å, α = β = γ = 90°, z = 16. The molecular mass and volume of the unit cell suggest that there is one molecule in the asymmetric unit. The I/σ(I) ratio for data at 3.0 Å resolution was 3.67, indicating that the final structure can be refined at higher resolution. Molecular replacement methods and the PC-refinement technique have not yet yielded the structure under a variety of search conditions. We are currently investigating the multiple isomorphous replacement approach to determine this crystal structure. © 1995 Wiley-Liss, Inc.  相似文献   

17.
18.
Clinical isolates of Trypanosoma brucei rhodesiense, which were resistant to arsenical drugs in murine infections, were examined for resistance in vitro. A rapid lysis assay was developed which was able to predict in vivo sensitivity to melarsoprol (Mel B, Arsobal) and melarsen oxide. The assay was based on the finding that long slender bloodforms of drug-sensitive isolates would lyse in the presence of arsenicals upon incubation in heat-inactivated fetal bovine serum. On the basis of plots of decrease in the absorbance of trypanosome suspensions vs time of incubation with drug, L50 values, reflecting the drug concentration necessary for lysis of 50% of the cells within 30 min. were calculated for five strains. These values ranged from less than 30 microM for arsenical-sensitive strains to greater than 75 microM in proven arsenic refractory isolates. Calcium was essential for lysis, and the presence of the Ca2+ chelator EGTA (10 mM) in serum delayed lysis of sensitive strains. Ca2+ channel antagonists (Verapamil, Diltiazem), however, did not enhance lysis of refractory isolates when used at 20 to 30 microM. Intracellular concentrations of reduced trypanothione, the apparent target of arsenicals, were similar for all isolates, approximately 1.02 +/- 0.28 nmol/10(8) cells, as detected by monobromobimane derivitization and HPLC analysis. Uptake of melarsen oxide was found to be reduced in arsenical refractory strains. Uptake was judged by reduction of free reduced trypanothione as a result of formation of the trypanothione-arsenic complex Mel T. Little change was found in arsenical-resistant strains, but sensitive strains had 50 to 70% reductions in trypanothione levels after incubation with a low (1 microM) level of melarsen oxide.  相似文献   

19.
Targett G. A. T. and Wilson V. C. L. C. 1973. The blood incubation infectivity test as a means of distinguishing between Trypanosoma brucei brucei and T. brucei rhodesiense. International Journal for Parasitology, 3: 5–11. A simple test for distinguishing between the morphologically identical subspecies Trypanosoma brucei rhodesiense, which is infective to man, and T. brucei brucei, which by definition is not, has been described. This test, the blood incubation infectivity test (BIIT), is based on absolute differences in the infectivity to rats of the subspecies after exposure to human blood, and was applied to strains which are preserved in the laboratory as stabilates. Five T. brucei brucei strains were BIIT negative since their infectivity was destroyed by incubation in normal human blood but only five of the nine T. brucei rhodesiense strains tested were consistently BIIT positive. The other four gave equivocal results, indicating that the resistance of T. brucei rhodesiense strains to the trypanocidal effect of human blood can change, probably as a result of maintenance in the laboratory.  相似文献   

20.
Two subspecies of Trypanosoma brucei s.l. co-exist within the animal populations of Eastern Africa; T. b. brucei a parasite which only infects livestock and wildlife and T. b. rhodesiense a zoonotic parasite which infects domestic livestock, wildlife, and which in humans, results in the disease known as Human African Trypanosomiasis (HAT) or sleeping sickness. In order to assess the risk posed to humans from HAT it is necessary to identify animals harbouring potentially human infective parasites. The multiplex PCR method described here permits differentiation of human and non-human infective parasites T. b. rhodesiense and T. b. brucei based on the presence or absence of the SRA gene (specific for East African T. b. rhodesiense), inclusion of GPI-PLC as an internal control indicates whether sufficient genomic material is present for detection of a single copy T. brucei gene in the PCR reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号