首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Summary Colocalization of calcitonin gene-related peptide (CGRP) and protein kinase C -subtype (PKC-) like immunoreactivities (LI) and the subcellular localization of CGRP-LI were studied in the ventral horn of rat spinal cord. Ultrastructurally CGRP-LI was localized on the membranes of the Golgi-complexes, in multivesicular bodies and in vesicles adjacent to the Golgi-complex in motoneuron perikarya. The colocalization of PKC- and CGRP-LI was detected in most of the ventral horn motoneurons. However, few motoneurons were only PKC--immunoreactive. These results suggest that PKC- may be involved in the regulation of CGRP release from motoric axon terminals.  相似文献   

2.
Nerve growth factor (NGF) is synthesized in cutaneous wound tissue, and its higher levels in the neonate may contribute to more efficient wound healing. We used in situ hybridization and immunohistochemistry to define NGF mRNA and protein expression in intact skin and following excision wounding in neonatal and adult rats. To determine whether NGF is associated with wound contractile fibroblasts (myofibroblasts), we also examined expression of !-smooth muscle actin (!-SMA) mRNA and protein, established markers for these cells. In intact skin, NGF mRNA and protein were present in vascular and arrector pili smooth muscle, hair follicle sheath cells, keratinocytes, and hypodermal fibroblasts. Neonatal adipocytes and Schwann cells also expressed NGF mRNA and protein, while adult adipocytes and Schwann cells displayed only NGF-ir. Following wounding, NGF mRNA expression was exuberant in these cell types, and increased similarly at both ages and appeared de novo in skeletal muscle cells. Additionally, both NGF mRNA and protein were present in macrophages and myofibroblasts, and expression in myofibroblasts was significantly greater in neonates. Wound myofibroblasts also expressed !-SMA. Surprisingly, after wounding !-SMA mRNA and protein were present in essentially all cells in which NGF mRNA was detected. We conclude that NGF expression is enhanced in many cell types after wounding, but greater NGF synthesis in neonates appears to be due to a more robust myofibroblast response. In addition, cell types which demonstrated NGF mRNA also expressed !-SMA, and staining for both markers increased following wounding, suggesting synthesis of both proteins is regulated in a coordinated fashion.  相似文献   

3.
α-Tocopherol augmentation in human neutrophils was investigated for effects on neutrophil activation and tyrosine phosphorylation of proteins, through its modulation of protein kinase C (PKC) and tyrosine phosphatase activities. Incubation of neutrophils with α-tocopherol succinate (TS) resulted in a dose-dependent incorporation into cell membranes, up to 2.5 nmol/2 × 106 cells. A saturating dose of TS (40 μmol/l) inhibited oxidant production by neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan (OZ) by 86 and 57%, as measured by luminol-amplified chemiluminescence (CL). With PMA, TS inhibited CL generation to a similar extent to staurosporine (10 nmol/l) or genistein (100 μmol/l), and much more than Trolox (40 μmol/l). With OZ, TS inhibited CL to a similar extent to Trolox. Neutrophil PKC activity was inhibited 50% or more by TS or staurosporine. The enzyme activity was unaffected by genistein or Trolox, indicating a specific interaction of α-tocopherol. TS or Trolox increased protein tyrosine phosphorylation in resting neutrophils, and as with staurosporine further increased tyrosine phosphorylation in PMA-stimulated neutrophils, while the tyrosine kinase (TK) inhibitor genistein diminished phosphorylation. These effects in resting or PMA-stimulated neutrophils were unrelated to protein tyrosine phosphatase (PTP) activities, which were maintained or increased by TS or Trolox. In OZ-stimulated neutrophils, on the other hand, all four compounds inhibited the increase in tyrosine-phosphorylated proteins. In this case, the effects of pre-incubation with TS or Trolox corresponded with partial inhibition of the marked (85%) decrease in PTP activity induced by OZ. These results indicate that α-tocopherol inhibits PMA-activation of human neutrophils by inhibition of PKC activity, and inhibits tyrosine phosphorylation and activation of OZ-stimulated neutrophils also through inhibition of phosphatase inactivation.  相似文献   

4.

Background

We recently reported that both sulfatide and cholesterol-3-sulfate (SCS) function as potent stimulators for the GSK-3β-mediated phosphorylation of tau protein (TP) in vitro [J. Biochem. 143 (2008) 359–367].

Methods

By means of successive gel filtration on a Superdex 200 pg column and three distinct ion-exchange column chromatographies, TP and its associated proteins were highly purified from the extract of rat brain.

Results

We found that (i) syndapin 1 and novel protein kinase C? (nPKC?) were identified as the TP-associated proteins; (ii) SCS highly stimulated the phosphorylation of TP and syndapin 1 by nPKC? as well as CK1; (iii) the full phosphorylation of TP and syndapin 1 by nPKC? in the presence of sulfatide resulted in their dissociation; (iv) TP primed by CK1 functioned as an effective phosphate acceptor for GSK-3β; (v) syndapin 1 highly stimulated the GSK-3β-mediated phosphorylation of TP; and (vi) TP isoforms were highly expressed in aged brain, whereas syndapin 1 was consistently detected in adult brain, but not in newborn brain.

General significance

These results provided here suggest that (i) TP-associated nPKC? suppresses the GSK-3β-mediated phosphorylation of TP through the phosphorylation of GSK-3β by the kinase in vitro; and (ii) SCS act as effective sole mediators to induce the GSK-3β-mediated high phosphorylation of both TP and its associated syndapin 1 involved in the biochemical processes of neuronal diseases, including Alzheimer's disease.  相似文献   

5.
We assessed the effects of protein kinase C ɛ (PKCɛ) for improving stem cell therapy for acute myocardial infarction (AMI). Primary mesenchymal stem cells (MSCs) were harvested from rat bone marrow. PKCɛ-overexpressed MSCs and control MSCs were transplanted into infarct border zones in a rat AMI model. MSCs and PKCɛ distribution and expression of principal proteins involved in PKCɛ signaling through the stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by immunofluorescence and western blot 1 day after transplantation. Echocardiographic measurements and histologic studies were performed at 4 weeks after transplantation, and MSC survival, expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGFβ), cardiac troponin I (cTnI), von Willebrand factor (vWF), smooth muscle actin (SMA) and factor VIII and apoptosis in infarct border zones were assessed. Rat heart muscles retained more MSCs and SDF-1, CXCR4, PI3K and phosphorylated AKT increased with PKCɛ overexpression 1 day after transplantation. MSC survival and VEGF, bFGF, TGFβ, cTnI, vWF, SMA and factor VIII expression increased in animals with PKCɛ-overexpressed MSCs at 4 weeks after transplantation and cardiac dysfunction and remodeling improved. Infarct size and apoptosis decreased as well. Inhibitory actions of CXCR4 or PI3K partly attenuated the effects of PKCɛ. Activation of PKCɛ may improve retention, survival and differentiation of transplanted MSCs in myocardia. Augmentation of PKCɛ expression may enhance the therapeutic effects of stem cell therapy for AMI.Irreversible and widespread loss of myocardial cells and subsequent ventricular remodeling induced by acute myocardial infarction (AMI) is the main cause of chronic heart failure1 and globally >17 million people died of ischemic heart diseases in 2008.2 Stem cell-based regenerative therapy for AMI is encouraging with respect to preclinical3, 4 and clinical data,5, 6, 7, 8 and this may soon be a therapeutic modality for injury resulting from coronary artery disease. Two problems – poor homing of transplanted cells to injury sites, and poor cell survival – require resolution before transplantation therapy can be broadly effective. The stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis has an important role during migration, proliferation and survival of stem cells, but using this knowledge to improve homing and survival of therapeutic stem cells has not been successful.Previous studies9, 10, 11 suggest that protein kinase C ɛ (PKCɛ) is essential for signal transduction for ischemic cardioprotection, but whether it has an effect on stem cell retention and survival and what mechanism underlies this effect is uncertain. We know that SDF-1 increased significantly in mesenchymal stem cells (MSCs) after treatment with PKC activator and decreased after treatment with a PKCɛ inhibitor in preliminary experiments, and our latest work indicates that activating PKCɛ improves migration and paracrine function of MSCs in vitro.12 Thus, we suggest that PKCɛ overexpression in transplanted bone marrow MSCs (BMMSCs) would improve retention and survival of MSC''s and improve cardiac function and remodeling in a rat AMI model.  相似文献   

6.
7.
This study examined the role of protein tyrosine kinase (PTK) and protein kinase C (PKC) in the signal transduction pathways for lymphocyte activation through IL-2R to generate LAK cells and through TCR—CD3 to generate CD3-AK cells. Two PTK inhibitors [herbimycin A and genistein (PTK-I)] and two PKC inhibitors [calphositin C and staurosporine (PKC-I)] were used in the experiments. It was found that the primary activation pathway through IL-2R was PTK-dependent; that is, generation of both the IL-2-induced proliferative and the cytotoxic responses was completely abrogated by PTK-I and not by PKC-I. Quite different results were obtained with the αCD3-induced CD3-AK cell response. First, the αCD3-induced proliferation was only partially inhibited by PTK-I or PKC-I alone. Second, generation of CD3-AK cytotoxic response was primarily PKC-dependent; that is, only PKC-I induced significant inhibition. Genistein was found to reduce protein tyrosine phosphorylation in both LAK cells and CD3-AK cells, indicating that CD3-AK cells were also susceptible to PTK-I treatment. Further studies showed that PTK-I and not PKC-I suppressed perforin mRNA expression and N-2-benzyoxycarbonyl-l-lysine thiobeneylester esterase production in LAK cells, and the opposite was true for CD3-AK cells. These results indicate that different pathways were employed in lymphocyte activation through IL-2R and TCR—CD3. The former pathway is primarily PTK-dependent. Activation through TCR—CD3 is a more complex event. Induction of a proliferative response can employ either a PTK- or a PKC-dependent pathway, whereas induction of a cytotoxic response is primarily PKC-dependent. Furthermore, it appears that a PTK-independent pathway exists for the induction of a CD3-AK response and thus suggests that activation of the second messenger PKC may not necessarily be preceded by PTK activation.  相似文献   

8.
9.
Effects of leucine and related compounds on protein synthesis were studied in RLC-16 hepatocytes. The incorporation of [3H] tyrosine into cellular protein was measured as an indexof protein synthesis. In leucine-depleted RLC-16 cells, L-leucineand its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipase A2 and C canceled stimulatory actions of L-leucine and KIC on protein synthesis, suggesting a possible involvement of either arachidonic acid metabolism by phospholipase A2, cyclooxygenase or lipoxygenase, or phosphatidylinositol degradation by phospholipase C in the stimulatory actions of L-leucine and KIC.Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of protein kinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in RLC-16 cells via activation of phospholipase C and production of diacylglycerol and inositol triphosphate from phosphatidylinositol, which in turn activate protein kinase C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The initiation and maintenance of reproductive function in mammals is critically dependent on the pulsatile secretion of gonadotropin‐releasing hormone (GnRH). This peptide drives the pulsatile release of FSH and LH from the pituitary pars distalis via signaling pathways that are activated by the type I GnRH receptor (GnRH‐R). Recently, a microarray analysis study reported that a number of genes, including mPer1, are induced by GnRH in immortalized gonadotrope cells. In view of these data, we have begun to analyze in detail the signaling pathways mediating the action of GnRH on mPer1 expression in these cells. Using quantitative real‐time polymprose cho read (PCR), we could confirm that exposure of immortalized gonadotropes (LβT2 cells) to the GnRH analog, buserelin, markedly induces mPer1 (but not mPer2) expression. Consistent with GnRH receptor signaling via the protein kinase (PK)‐C pathway, exposure of the cells to phorbol 12,13‐dibutyrate rapidly elevates both mPer1 and LHβ subunit mRNA levels, while pharmacological inhibition of PKC prevents the mPer1 and LHβ response to buserelin. As GnRH is known to regulate gonadotropin synthesis via activation of p42/44 mitogen‐activated protein kinase (MAPK) signaling pathways, we then examined the involvement of this pathway in regulating mPer1 expression in gonadotropes. Our data reveal that GnRH‐induced mPer1 expression is blocked following acute exposure to a MAPK kinase inhibitor. Although the involvement of this signaling mechanism in the regulation of mPer1 is known in neurons, e.g., in the suprachiasmatic nuclei, the induction of mPer1 in gonadotropes represents a novel mechanism of GnRH signaling, whose functional significance is still under investigation.  相似文献   

11.
Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by proinflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Members of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle (VSM) cells as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β-stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells. We found that stimulation of VSM cells with IL-1β increased PKCδ activity and intracellular ROS generation. SiRNA silencing of NOX4 but not NOX1 ablated the IL-1β-dependent increase in ROS production. Pharmacological inhibition of PKCδ activity as well as siRNA depletion of PKCδ or NOX4 blocked the IL-1β-dependent activation of JNK. Further studies showed that the IL-1β-dependent upregulation of inducible NO synthase expression was inhibited through JNK inhibition and NOX4 silencing. Taken together, these results indicate that IL-1β-dependent activation of PKCδ is modulated by NOX4-derived ROS. Our study positions PKCδ as an important redox-sensitive mediator of IL-1β-dependent signaling and downstream activation of inflammatory mediators in VSM cells.  相似文献   

12.
13.
14.
This study was aimed at examining the effect of tamoxifen, a selective estrogen receptor modulator, on the release of endogenous glutamate in rat cerebral cortex nerve terminals (synaptosomes) and exploring the possible mechanism. Tamoxifen inhibited the release of glutamate that was evoked by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent and insensitive to the estrogen receptor antagonist. The effect of tamoxifen on the evoked glutamate release was prevented by the chelating extracellular Ca(2+) ions, and by the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate did not have any effect on the action of tamoxifen. Tamoxifen did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in cytosolic [Ca(2+)]. Furthermore, the inhibitory effect of tamoxifen on the evoked glutamate release was abolished by the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na(+)/Ca(2+) exchanger blocker CGP37157. In addition, the protein kinase C (PKC) inhibitors GF109203X or Ro318220 prevented tamoxifen from inhibiting glutamate release. Western blotting showed that tamoxifen significantly decreased the 4-AP-induced phosphorylation of PKC and PKCα. Together, these results suggest that tamoxifen inhibits glutamate release from rat cortical synaptosomes, through the suppression of presynaptic voltage-dependent Ca(2+) entry and PKC activity.  相似文献   

15.
Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号