首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

The saturation pulse method provides a means to distinguish between photochemical and non-photochemical quenching, based on the assumption that the former is suppressed by a saturating pulse of light (SP) and that the latter is not affected by the SP. Various types of non-photochemical quenching have been distinguished by their rates of dark relaxation in the time ranges of seconds, minutes, and hours. Here we report on a special type of non-photochemical quenching, which is rapidly induced by a pulse of high-intensity light, when PS II reaction centers are closed, and rapidly relaxes again after the pulse. This high-intensity quenching, HIQ, can be quantified by pulse-amplitude-modulation (PAM) fluorimetry (MULTI-COLOR-PAM, high sensitivity combined with high time resolution) via the quasi-instantaneous post-pulse fluorescence increase that precedes recovery of photochemical quenching in the 100–400-µs range. The HIQ amplitude increases linearly with the effective rate of quantum absorption by photosystem II, reaching about 8% of maximal fluorescence yield. It is not affected by DCMU, is stimulated by anoxic conditions, and is suppressed by energy-dependent non-photochemical quenching (NPQ). The HIQ amplitude is close to proportional to the square of maximal fluorescence yield, Fm′, induced by an SP and varied by NPQ. These properties are in line with the working hypothesis of HIQ being caused by the annihilation of singlet excited chlorophyll a by triplet excited carotenoid. Significant underestimation of maximal fluorescence yield and photosystem II quantum yield in dark-acclimated samples can be avoided by use of moderate SP intensities. In physiologically healthy illuminated samples, NPQ prevents significant lowering of effective photosystem II quantum yield by HIQ, if excessive SP intensities are avoided.

  相似文献   

3.
4.
The interaction of ethidium bromide (EB) with DNA has been investigated using the pulse radiolysis technique. In particular, the absolute rate constant for the reaction of hydrated electrons, generated by single pulses of high-energy electrons, with EB is shown to drop dramatically in the presence of DNA. This drop in diffusion-limited reactivity results from the interaction of EB with DNA, effectively immobilising it, thus lowering the reaction cross-section or probability. Analysis of the resulting kinetic spectrophotometric data shows that they are consistent with a reversible interaction of EB with DNA as described by the law of mass action. The Scatchard-type plots obtained are linear, and give quantitative information on the extent and degree of association, comparable with that obtained by more conventional methods. The potential of the pulse radiolysis technique for studying different types of interactions between small molecules and various biopolymers has been demonstrated.  相似文献   

5.
Membrane fusion is a key step in the virus mediated cell fusion. The vesicular dispersion serves as a model system to study the membrane fusion. We employed dynamic and static light scattering to study the fusion of phosphatidylcholine vesicles in the presence of model fusion peptide fragments from the hemagglutinin HA2 protein. The fusion-induced aggregation under the present experimental setup exhibited strong pH dependence, similar to the parental viral protein. Replacement of the glycine residue at the extreme amino terminus by glutamic acid (G1E) abolished fusion activity. The average molecular mass and diameter of vesicular dispersion obtained from static and dynamic light scattering measurements respectively at neutral and acidic pH showed about three fold increase in acidic solution containing wild type fusion peptide. The light scattering data are consistent with lipid mixing results. The present work demonstrates the utility of light scattering as a facile means to monitor the fusion process.  相似文献   

6.
The photochemical and subsequent thermal reactions of phoborhodopsin (pR490), which mediates the negative phototaxis (phobic reaction) of Halobacterium halobium, were investigated by low-temperature spectrophotometry. At room temperature, the absorption spectrum of pR490 displayed vibrational structure with a maximum at 490 nm and a shoulder at 460 nm, which were remarkably sharpened by cooling, resulting in the appearance of two well-separated peaks. On irradiation of pR490 at -170 degrees C, a photo-steady-state mixture composed of pR490 and two photoproducts, P520 and P480, was formed. P480 had an absorption maximum at 480 nm and thermally converted to pR490 above -160 degrees C, while P520 had an absorption maximum at 515 nm and thermally converted to P350, the next intermediate, above -60 degrees C. Above -30 degrees C, P350 was converted to P530, and then reverted to pR490. P520, P350, and P530 may correspond to K, M, and O intermediates of bacteriorhodopsin, respectively, on the basis of their absorption spectra, but the intermediates corresponding to L and N intermediates were not observed. On the basis of these results, a new scheme of the photoreaction cycle of pR490 was presented.  相似文献   

7.
8.
We use a 6.8-fs laser as the light source for broad-band femtosecond pump-probe real-time vibrational spectroscopy to investigate both electronic relaxation and vibrational dynamics of the Qy-band of Chl-a at 293 K. More than 25 vibrational modes coupled to the Qy transition are observed. Eleven of them have been clarified predominantly due to the excited state, and six of them are concluded to be nearly exclusively resulting from the ground-state wave-packet motion. Moreover, thanks to the broad-band detection over 5000 cm−1, the modulated signals due to the excited state vibrational coherence are observed on both sides of the 0-0 transition with equal separation. The corresponding nonlinear process has been studied using a three-level model, from which the probe wavelength dependence of the phase of the periodic modulation can be calculated. The probe wavelength dependence of the vibrational amplitude is interpreted in terms of the interaction between the “pump” or “laser,” Stokes, and anti-Stokes field intermediated by the molecular vibrations. In addition, an excited state absorption peak at ∼709 nm has been observed. To the best of our knowledge, this is the first study of broad-band real-time vibrational spectroscopy in Chl-a.  相似文献   

9.
Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log–linear manner with the distance from the irradiated surface as predicted by Beer's law. The amount of fluorescence was proportional to chlorophyll concentration for chlorophyll solutions given epi‐illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi‐illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50–70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer–Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively.  相似文献   

10.
Chromosomes of human blood cells exposed to BUdR for two cell cycles showed an R-band pattern of fluorescence without lateral differentiation after staining with the GC-specific DNA-fluorochrome mithramycin. Differential sister chromatid fluorescence could be induced by a mild near-ultraviolet irradiation pretreatment which was without effect in Feulgen staining. Thus, besides the primary alteration of DNA structure caused by incorporation of BUdR, secondary structural alterations, probably mediated via chromosomal proteins, are required in order to obtain differential mithramycin-fluorescence of sister chromatids. The differential staining pattern was similar to that achieved with the AT-specific DNA-fluorochrome DAPI. Therefore, it may be concluded that the base specificity of fluorochromes does not play any part in the production of differential fluorescence of sister chromatids by this method.  相似文献   

11.
Fluorometers that measure the kinetics of chlorophyll fluorescence have become invaluable tools for determining the photosynthetic performance of plants. Many of these instruments use high frequency modulated light to measure the rate, efficiency and regulation of photosynthesis. The technique is non-invasive and is effective under diverse environmental conditions. Recently, imaging fluorometers have been introduced that reveal variability in photosynthesis over the surface of a leaf or between individual plants. Most imaging instruments depend on continuous light or low frequency modulated light for fluorescence excitation, which imposes serious limitations on measurements of the fluorescence parameters, especially the minimum fluorescence (F0) and variable fluorescence (FV). Here, we describe a new instrument that combines the advantage of high frequency modulated light with two-dimensional imaging of chlorophyll fluorescence. The fluorometer produces dynamic images of chlorophyll fluorescence from leaves or plants, providing accurate mapping of F0 and FV, and non-photochemical quenching. A significant feature of the instrument is that it can record fluorescence images of leaves in daylight under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
13.
14.
Heat denaturation of horse liver alcohol dehydrogenase was followed in the presence of isobutyramide at various degrees of saturation of the binding sites by NADH. A study of the fluorescence enhancement which is observed when an excess of NADH is added to the partially denatured mixtures provides information regarding the relative concentrations of mono- and bioccupied enzyme molecules. This approach is of value in situations when the association constants for coenzyme are so large that the concentration of the free ligand is negligible. The results obtained indicate that the binding of NADH to liver alcohol dehydrogenase follows the statistically predicted distribution. At the same time evidence was obtained for interaction between the two subunits of the enzyme.  相似文献   

15.
Cells treated with ultraviolet (UV) radiation undergo cell cycle arrest at the S-phase and G1/S boundary, allowing DNA repair to occur. Several proteins such as replication protein A and DNA-dependent protein kinase have been suggested to be involved in UV-induced inhibition of DNA replication. However, the role of these proteins in inhibiting DNA replication remains unknown. Other proteins may play important roles in modulating functions of these proteins in response to UV-irradiation. To understand the broad range of proteins involved in this inhibition, we carried out a systematic study to identify specific proteins involved in UV-induced replication arrest using two-dimensional gel electrophoresis and mass spectrometry. Unique changes in protein expression level for 31 proteins were observed over a 24-hour time course, including calgizzarin, cyclophilin A, and macrophage migration inhibitory factor. The expression level changes of these proteins are dynamically correlated to DNA replication activity, suggesting involvement of these proteins in modulating DNA replication and repair activities. This proteomic approach provides opportunities to gain insights into the mechanism by which DNA replication is inhibited.  相似文献   

16.
A differential Giemsa staining between sister chromatids was obtained by treating chromosomes replicated twice in medium containing 5-bromodeoxyuridine (BrdU) with Hoechst 33258 plus black light at 55 degrees C (HB pretreatment) and deoxyribonuclease (DNase) I, II, or micrococcal nuclease. In this staining pattern the BrdU bifilarly substituted chromatids were darkly and the unifilarly substituted chromatids lightly stained. This staining pattern was obtained only by staining the HB-DNase I-treated chromosomes with Giemsa and methylene blue, not by several other dyes tested. Relatively more DNA labelling was removed from the non-BrdU-substituted than the BrdU-substituted chromosomes, when the HB-pretreated chromosomes were digested with DNase I. But the protein labelling was not removed appreciably in the same treatment. The differential DNase I sensitivity between the non-BrdU-substituted and BrdU-substituted chromosomes disappeared when the HB-pretreated chromosomes were incubated with proteinase K before The DNase I digestion. Moreover, no differential DNase I sensitivity was found between the HB-pretreated isolated DNA containing and not containing BrdU. We propose that during the HB pretreatment, more DNA-protein cross-linkings are induced in BrdU bifilarly substituted than the unifilarly substituted chromatids. This structure protects the chromosomal DNA against the DNase I digestion. Thus, a reverse differential Giemsa staining between sister chromatids is obtained by the HB-DNase I treatment.  相似文献   

17.
Individual, dormant spores ofBacillus sphaericus were studied with laser diffractometry. Correlation coefficients were obtained for the water content and radius of the protoplast and the water content and thickness of the integument of the spores. The coefficients showed that the states of the protoplast and the integument were interrelated. The water contents of the protoplast and the integument were positively correlated (=0.73), and spores with thinner integuments had more dehydrated protoplasts. The coefficients were compared with qualitative predictions based on current models of the mechanism responsible for protoplast dehydration. The results did not support models involving an expansion of the cortex as the cause of the dehydration, but were consistent with cortex contraction and the model in which the cortex maintained rather than produced the dehydrated state of the protoplast.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号