首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Genomes of eukaryotes are partitioned into domains of functionally distinct chromatin states. These domains are stably inherited across many cell generations and can be remodeled in response to developmental and external cues, hence contributing to the robustness and plasticity of expression patterns and cell phenotypes. Remarkably, recent studies indicate that these 1D epigenomic domains tend to fold into 3D topologically associated domains forming specialized nuclear chromatin compartments. However, the general mechanisms behind such compartmentalization including the contribution of epigenetic regulation remain unclear. Here, we address the question of the coupling between chromatin folding and epigenome. Using polymer physics, we analyze the properties of a block copolymer model that accounts for local epigenomic information. Considering copolymers build from the epigenomic landscape of Drosophila, we observe a very good agreement with the folding patterns observed in chromosome conformation capture experiments. Moreover, this model provides a physical basis for the existence of multistability in epigenome folding at sub-chromosomal scale. We show how experiments are fully consistent with multistable conformations where topologically associated domains of the same epigenomic state interact dynamically with each other. Our approach provides a general framework to improve our understanding of chromatin folding during cell cycle and differentiation and its relation to epigenetics.  相似文献   

4.
5.
BackgroundOne of the most important recent findings in cancer genomics is the identification of novel driver mutations which often target genes that regulate genome-wide chromatin and DNA methylation marks. Little is known, however, as to whether these genes exhibit patterns of epigenomic deregulation that transcend cancer types.ResultsHere we conduct an integrative pan-cancer-wide analysis of matched RNA-Seq and DNA methylation data across ten different cancer types. We identify seven tumor suppressor and eleven oncogenic epigenetic enzymes which display patterns of deregulation and association with genome-wide cancer DNA methylation patterns, which are largely independent of cancer type. In doing so, we provide evidence that genome-wide cancer hyper- and hypo- DNA methylation patterns are independent processes, controlled by distinct sets of epigenetic enzyme genes. Using causal network modeling, we predict a number of candidate drivers of cancer DNA hypermethylation and hypomethylation. Finally, we show that the genomic loci whose DNA methylation levels associate most strongly with expression of these putative drivers are highly consistent across cancer types.ConclusionsThis study demonstrates that there exist universal patterns of epigenomic deregulation that transcend cancer types, and that intra-tumor levels of genome-wide DNA hypomethylation and hypermethylation are controlled by distinct processes.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0699-9) contains supplementary material, which is available to authorized users.  相似文献   

6.
Epigenomic profiling using microarrays   总被引:3,自引:0,他引:3  
van Steensel B  Henikoff S 《BioTechniques》2003,35(2):346-50, 352-4, 356-7
  相似文献   

7.
In plant cells, DNA is packaged into chromatin by wrapping around histone octamers. Pathways that lead to cytosine DNA methylation, posttranslational histone modifications and certain components of the RNA interfering (RNAi) pathway are critically important in modulating chromatin structure, thereby affecting many molecular processes that take place in a cell. Recent advances in microarray and high-throughput sequencing technologies have made it possible to study these pathways on a genome-wide scale. Results from such epigenomic studies are broadening our understanding of plant genomes and are also providing important clues regarding the mechanisms and functions of these pathways that can be further tested using genetic and biochemical approaches. This review focuses on the high-throughput approaches that have been successfully applied in plant epigenomic studies.  相似文献   

8.
Zhao Y  Zhou DX 《遗传学报》2012,39(7):307-315
Epigenomes including genome-wide histone modification and DNA methylation profiles are important for genome activity and for defining gene expression patterns of plant development and responses to various environmental conditions.Rice is the most important crop plant and serves as a model for cereal genomics.Rice epigenomic landscape is emerging and the function of chromatin modification regulators in gene expression,transposon repression and plant development is being characterized.Epigenomic variation that gives rise to stable or transgenerational heritable epialleles related to variation of important agronomical traits or stress responses is being characterized in rice.Implication of epigenomic variation in rice heterosis is being exploited.  相似文献   

9.
Epigenomic modifiers, such as histone deacetylase inhibitors, are compounds that regulate gene expression by interfering with the enzymatic machinery that maintains the proper chromatin structure of the nucleus. These compounds are at the forefront of novel therapeutic agents for the treatment of several diseases including cancer and genetic disorders such as beta-thalassemia and sickle cell disease. Here we review the current understanding of the mechanism of action of epigenomic modifiers in the treatment of beta-thalassemia and sickle cell anemia. We also discuss how the lessons learned from the study of the effects of these compounds on the beta-globin locus, one of the best characterized regions of the human genome, might contribute to the understanding of the mechanism of action of these same compounds in cancer, where the specific regions of the genome that are responsible for the pathophysiology of the disease are often poorly defined.  相似文献   

10.
In its widest sense, the term epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. These mechanisms comprise DNA and chromatin modifications and their associated systems, as well as the noncoding RNA machinery. The epigenetic apparatus is essential for controlling normal development and homeostasis, and also provides a means for the organism to integrate and react upon environmental cues. A multitude of functional studies as well as systematic genome-wide mapping of epigenetic marks and chromatin modifiers reveal the importance of epigenomic mechanisms in human pathologies, including inflammatory conditions and musculoskeletal disease such as rheumatoid arthritis. Collectively, these studies pave the way to identify possible novel therapeutic intervention points and to investigate the utility of drugs that interfere with epigenetic signalling not only in cancer, but possibly also in inflammatory and autoimmune diseases.  相似文献   

11.
12.
The view of DNA packaging into chromatin as a mere obstacle to DNA repair is evolving. In this review, we focus on histone variants and heterochromatin proteins as chromatin components involved in distinct levels of chromatin organization to integrate them as real players in the DNA damage response (DDR). Based on recent data, we highlight how some of these chromatin components play active roles in the DDR and contribute to the fine-tuning of damage signaling, DNA and chromatin repair. To take into account this integrated view, we revisit the existing access-repair-restore model and propose a new working model involving priming chromatin for repair and restoration as a concerted process. We discuss how this impacts on both genomic and epigenomic stability and plasticity.  相似文献   

13.
Genome-wide approaches to studying chromatin modifications   总被引:2,自引:0,他引:2  
Over two metres of DNA is packaged into each nucleus in the human body in a manner that still allows for gene regulation. This remarkable feat is accomplished by the wrapping of DNA around histone proteins in repeating units of nucleosomes to form a structure known as chromatin. This chromatin structure is subject to various modifications that have profound influences on gene expression. Recently developed techniques to study chromatin modifications at a genome-wide scale are now allowing researchers to probe the complex components that make up epigenomes. Here we review genome-wide approaches to studying epigenomic structure and the exciting findings that have been obtained using these technologies.  相似文献   

14.
15.
All animals have evolved solutions to manage their genomes, enabling the efficient organization of meters of DNA strands in the nucleus and allowing for nuanced regulation of gene expression while keeping transposable elements suppressed. Epigenetic modifications are central to accomplishing all these. Recent advances in sequencing technologies and the development of techniques that profile epigenetic marks and chromatin accessibility using reagents that can be used in any species has catapulted epigenomic studies in diverse animal species, shedding light on the multitude of epigenomic mechanisms utilized across the evolutionary tree. Now, comparative epigenomics is a rapidly growing field that is uncovering mechanistic aspects of epigenetic modifications and chromatin organization in non-model invertebrates, ranging from octopus to sponges. This review puts recent discoveries in the epigenetics of non-model invertebrates in historical context, and describes new insight into the patterning and functions of DNA methylation and other highly conserved epigenetic modifications.  相似文献   

16.
In multicellular organisms, each cell contains the same DNA sequence, but with different epigenetic information that determines the cell specificity. Semi-conservative DNA replication faithfully copies the parental nucleotide sequence into two DNA daughter strands during each cell cycle. At the same time, epigenetic marks such as DNA methylation and histone modifications are either precisely transmitted to the daughter cells or dynamically changed during S-phase. Recent studies indicate that in each cell cycle, many DNA replication related proteins are involved in not only genomic but also epigenomic replication. Histone modification proteins, chromatin remodeling proteins, histone variants, and RNAs participate in the epigenomic replication during S-phase. As a consequence, epigenome replication is closely linked with DNA replication during S-phase.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号