首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Birchler JA 《Genetics》1981,97(3-4):625-637
The levels of alcohol dehydrogenase (ADH) do not exhibit a structural gene-dosage effect in a one to four dosage series of the long arm of chromosome one (1L) (Birchler 1979). This phenomenon, termed dosage compensation, has been studied in more detail. Experiments are described in which individuals aneuploid for shorter segments were examined for the level of ADH in order to characterize the genetic nature of the compensation. The relative ADH expression in segmental trisomics and tetrasomics of region 1L 0.72-0.90, which includes the Adh locus, approaches the level expected from a strict gene dosage effect. Region 1L 0.20-0.72 produces a negative effect upon ADH in a similar manner to that observed with other enzyme levels when 1L as a whole is varied (Birchler 1979). These and other comparisons have led to the concept that the compensation of ADH results from the cancellation of the structural gene effect by the negative aneuploid effect. The example of ADH is discussed as a model for certain other cases of dosage compensation in higher eukaryotes.  相似文献   

2.
The alcohol dehydrogenase-1 FCm (Adh-FCm) duplication in maize was subjected to ethyl methanesulfonate (EMS) mutagenesis. Of the mutants recovered, eight produced ADH polypeptides with altered electrophoretic mobility. Four produced new mobilities of the progenitor F with no change of the Cm molecule; the remainder altered only the Cm enzyme. No cases were found in which the electrophoretic mobilities of the two types of subunits were simultaneously altered, and no complete nulls lacking both F and Cm were recovered. These observations confirm the duplicate nature of the FCm complex.  相似文献   

3.
Low-temperature stress was shown to cause a rapid increase in steady-state levels of alcohol dehydrogenase-1 message (Adh1) and protein activity (ADH1) in maize (Zea mays) (B37N, A188) and rice (Oryza sativa) (Taipei 309, Calmochi 101) seedlings. Maize roots and rice shoots and roots from 7-day seedlings shifted to low temperature (10°C) contained as much as 15-fold more Adh1 mRNA and 8-fold more ADH1 protein activity than the corresponding tissues from untreated seedlings. Time-course studies showed that these tissues accumulated Adh1 mRNA and ADH1 activity severalfold within 4- to 8-hour, levels plateaued within 20 to 24 hours, and remained elevated at 4 days of cold treatment. Within 24 hours of returning cold-stressed seedlings to ambient temperature, Adh1 mRNA and ADH1 activity decreased to pretreatment levels. Histochemical staining of maize and rice tissue imprints showed that ADH activity was enhanced along the lengths of cold-stressed maize primary roots and rice roots, and along the stems and leaves of rice shoots. Our observations suggest that short-term cold stress induces Adh1 gene expression in certain plant tissues, which, reminiscient of the anaerobic response, may reflect a fundamental shift in energy metabolism to ensure tissue survival during the stress period.  相似文献   

4.
Using a battery of methylation-sensitive restriction enzymes, cytosine methylation at 23 sites in a 7.6 kb region surrounding the Alcohol dehydrogenase-1 (Adh1) gene was measured in DNA prepared from immature maize cobs. Both the 5 upstream region and the entire coding region were hypomethylated in the two alleles examined. Methylation in Adh1 is independent of changes in Mutator transposable element methylation. The role of DNA methylation in Adh1 gene regulation is discussed.  相似文献   

5.
We have used the cDNA probes for human aldehyde dehydrogenase-1 (ALDH1) and aldehyde dehydrogenase-2 (ALDH2) to determine regional chromosomal locations of these two genes by in situ hybridization. Results presented here allow localization of ALDH1 to band q21 on chromosome 9 and ALDH2 to band q24 on chromosome 12.  相似文献   

6.
The genetic control of NADH dehydrogenase-1 (NDH-1) and aromatic alcohol dehydrogenase-2 (AADH-2) was investigated in Triticum aestivum cv. Chinese Spring. Evidence was obtained that NDH-1 is active as a monomer and is encoded by genes located in the p arms of the homoeologous group 4 chromosomes. The NDH-1 gene loci located in 4Ap, 4Bp, and 4Dp were designated Ndh-A1, Ndh-B1, and Ndh-D1, respectively. Aadh-A2 was previously reported to be located in 6Aq; in this study, Aadh-B2 and Aadh-D2 were localized in 6Bq and 6Dq, respectively. Alcohol dehydrogenase-1 is expressed on AADH-2 zymograms; the presence of a contaminating aliphatic alcohol in one or more reagents is suggested as the probable cause of this phenomenon.  相似文献   

7.
Yeast alcohol dehydrogenase (YADH) plays an important role in the conversion of alcohols to aldehydes or ketones. YADH-1 is a zinc-containing protein, and it accounts for the major part of ADH activity in growing baker's yeast. To gain insight into how oxidative modification of the enzyme affects its function, we exposed YADH-1 to hydrogen peroxide in vitro and assessed the oxidized protein by LC-MS/MS analysis of proteolytic cleavage products of the protein and by measurements of enzymatic activity, zinc release, and thiol/thiolate loss. The results illustrated that Cys43 and Cys153, which reside at the active site of the protein, could be selectively oxidized to cysteine sulfinic acid (Cys-SO2H) and cysteine sulfonic acid (Cys-SO3H). In addition, H2O2 induced the formation of three disulfide bonds: Cys43-Cys153 in the catalytic domain, Cys103-Cys111 in the noncatalytic zinc center, and Cys276-Cys277. Therefore, our results support the notion that the oxidation of cysteine residues in the zinc-binding domain of proteins can go beyond the formation of disulfide bond(s); the formation of Cys-SO2H and Cys-SO3H is also possible. Furthermore, most methionines could be oxidized to methionine sulfoxides. Quantitative measurement results revealed that, among all the cysteine residues, Cys43 was the most susceptible to H2O2 oxidation, and the major oxidation products of this cysteine were Cys-SO2H and Cys-SO3H. The oxidation of Cys43 might be responsible for the inactivation of the enzyme upon H2O2 treatment.  相似文献   

8.
9.
Recombination at the Rp1 locus of maize.   总被引:11,自引:0,他引:11  
Summary The Rp1 locus of maize determines resistance to races of the maize rust fungus (Puccinia sorghi). Restriction fragment length polymorphism markers that closely flank Rp1 were mapped and used to study the genetic fine structure and role of recombination in the instability of this locus. Susceptible progeny, lacking the resistance of either parent, were obtained from test cross progeny of several Rp1 heterozygotes. These susceptible progeny usually had non-parental genotypes at flanking marker loci, thereby verifying their recombinational origin. Seven of eight Rp1 alleles (or genes) studied were clustered within about 0.2 map units of each other. Rpl G, however, mapped from 1–3 map units distal to other Rp1 alleles. Rp5 also mapped distally to most Rp1 alleles. Other aspects of recombination at Rp1 suggested that some alleles carry duplicated sequences, that mispairing can occur, and that unequal crossing-over may be a common phenomenon in this region; susceptible progeny from an Rp1 A homozygote had recombinant flanking marker genotypes, and susceptible progeny from an Rp1 DlRp1 F heterozygote showed both possible nonparental flanking marker genotypes.  相似文献   

10.
The origin of an unstable locus in maize   总被引:1,自引:0,他引:1       下载免费PDF全文
Peterson PA 《Genetics》1968,59(3):391-398
  相似文献   

11.
Two types of alleles exist in the human alcohol dehydrogenase-2 (ADH 2) locus. The usualADH 2 1 allele is common in Caucasians, while the atypicalADH 2 2 allele is predominant in Orientals. TheADH 2 2 produces the β2 subunit, which is catalytically far more active than the β1 subunit produced by theADH 2 1 gene. The racial difference in alcohol-related problems could be related to the genetic differences in ADH and other ethanol-metabolizing enzymes. In order to examine the possibility, a method for determiningADH 2 genotypes was developed. Two 21-base synthetic oligonucleotides, one complementary to the usualADH 2 1 allele and the other complementary to the atypicalADH 2 2 allele, were used as specific probes for in-gel hybridization analysis of human genomic DNA from peripheral blood. Under appropriate hybridization conditions, these two probes can hybridize to their specific complementary alleles and, thus, allow the genotyping of theADH 2 locus. Genotypes of theADH 2 locus of 49 unrelated Japanese individuals were determined. The frequency of the atypicalADH 2 2 gene was found to be 0.71 in the Japanese population examined. This research was supported by Grant AA05763 from the National Institutes of Health.  相似文献   

12.
Recombination between paralogues at the Rp1 rust resistance locus in maize   总被引:7,自引:0,他引:7  
Rp1 is a complex rust resistance locus of maize. The HRp1-D haplotype is composed of Rp1-D and eight paralogues, seven of which also code for predicted nucleotide binding site-leucine rich repeat (NBS-LRR) proteins similar to the Rp1-D gene. The paralogues are polymorphic (DNA identities 91-97%), especially in the C-terminal LRR domain. The remaining family member encodes a truncated protein that has no LRR domain. Seven of the nine family members, including the truncated gene, are transcribed. Sequence comparisons between paralogues provide evidence for past recombination events between paralogues and diversifying selection, particularly in the C-terminal half of the LRR domain. Variants selected for complete or partial loss of Rp1-D resistance can be explained by unequal crossing over that occurred mostly within coding regions. The Rp1-D gene is altered or lost in all variants, the recombination breakpoints occur throughout the genes, and most recombinant events (9/14 examined) involved the same untranscribed paralogue with the Rp1-D gene. One recombinant with a complete LRR from Rp1-D, but the amino-terminal portion from another homologue, conferred the Rp1-D specificity but with a reduced level of resistance.  相似文献   

13.
14.
Chromosomal assignment of the genes for two major human aldehyde dehydrogenase isozymes, that is, cytosolic aldehyde dehydrogenase-1 (ALDH1) and mitochondrial aldehyde dehydrogenase-2 (ALDH2) were determined. Genomic DNA, isolated from a panel of mouse-human and Chinese hamster-human hybrid cell lines, was digested by restriction endonucleases and subjected to Southern blot hybridization using cDNA probes for ALDH1 and for ALDH2. Based on the distribution pattern of ALDH1 and ALDH2 in cell hybrids, ALDH1 was assigned to the long arm of human chromosome 9 and ALDH2 to chromosome 12.  相似文献   

15.
The function of the Waxy locus in starch synthesis in maize endosperm   总被引:1,自引:0,他引:1  
The soluble adenosine diphosphate glucose-starch glucosyltransferase of maize (Zea mays L.) endosperm uses adenosine diphosphate glucose as a sole substrate, but the starch granule-bound nucleoside diphosphate glucose-starch glucosyltransferase utilizes both adenosine diphosphate glucose and uridine diphosphate glucose. The soluble glucosyltransferase can be bound to added amylose or to maize starch granules that contain amylose. However, binding of the soluble enzyme to the starch granules does not change its substrate specificity to that of the natural starch granule-bound glucosyltransferase. Furthermore, the soluble glucosyltransferase bound to starch granules can be removed by repeated washing without a change in specificity. The bound glucosyltransferase can be released by mechanical disruption of starch granules, and the released enzyme behaves in a manner similar to that of the bound enzyme in several respects. These observations suggest that the soluble and bound glucosyltransferases are different enzymes. The starch granule-bound glucosyltransferase activity is linearly proportional to the number of Wx alleles present in the endosperm. This is compatible with the hypothesis that the Wx allele is a structural gene coding for the bound glucosyltransferase, which is important for the normal synthesis of amylose.Journal Paper No. 4818 of the Purdue University Agricultural Experiment Station.  相似文献   

16.
17.
18.
Controlling-element events at the shrunken locus in maize   总被引:16,自引:2,他引:14       下载免费PDF全文
Burr B  Burr FA 《Genetics》1981,98(1):143-156
We have examined insertions of the controlling element Ds at the Shrunken locus of maize. A cDNA probe complementary to a portion of the Shrunken locus mRNA was prepared. This probe recognizes a unique sequence in maize DNA. Using lines carrying derivatives of the same short arm of chromosome 9, we have detected modifications at the nucleic acid level caused by Ds. The changes appear to be large insertions, one of which may be more than 20 kilobase pairs in length. These observations provide a basis for the isolation and molecular characterization of one of the maize controlling elements.  相似文献   

19.
20.
The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene beta-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号