首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal serine protease that removes tripeptides from the free N termini of small polypeptides and also shows a minor endoprotease activity. Due to various naturally occurring mutations, an inherited deficiency of TPP I activity causes a fatal lysosomal storage disorder, classic late infantile neuronal ceroid lipofuscinosis (CLN2). In the present study, we analyzed biosynthesis, glycosylation, transport, and proteolytic processing of this enzyme in stably transfected Chinese hamster ovary cells as well as maturation of the endocytosed proenzyme in CLN2 lymphoblasts, fibroblasts, and N2a cells. Human TPP I was initially identified as a single precursor polypeptide of approximately 68 kDa, which, within a few hours, was converted to the mature enzyme of approximately 48 kDa. Compounds affecting the pH of intracellular acidic compartments, those interfering with the intracellular vesicular transport as well as inhibition of the fusion between late endosomes and lysosomes by temperature block or 3-methyladenine, hampered the conversion of TPP I proenzyme into the mature form, suggesting that this process takes place in lysosomal compartments. Digestion of immunoprecipitated TPP I proenzyme with both N-glycosidase F and endoglycosidase H as well as treatment of the cells with tunicamycin reduced the molecular mass of TPP I proenzyme by approximately 10 kDa, which indicates that all five potential N-glycosylation sites in TPP I are utilized. Mature TPP I was found to be partially resistant to endo H treatment; thus, some of its N-linked oligosaccharides are of the complex/hybrid type. Analysis of the effect of various classes of protease inhibitors and mutation of the active site Ser(475) on human TPP I maturation in cultured cells demonstrated that although TPP I zymogen is capable of autoactivation in vitro, a serine protease that is sensitive to AEBSF participates in processing of the proenzyme to the mature, active form in vivo.  相似文献   

2.
Tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal aminopeptidase that cleaves off tripeptides from the free N termini of oligopeptides and also shows minor endopeptidase activity. TPP I is synthesized as a preproenzyme. Its proenzyme autoactivates under acidic conditions in vitro, resulting in a rapid conversion into the mature form. In this study, we examined the process of maturation in vitro of recombinant latent human TPP I purified to homogeneity from secretions of Chinese hamster ovary cells overexpressing TPP I cDNA. Autoprocessing of TPP I proenzyme was carried out at a wide pH range, from approximately 2.0 to 6.0, albeit with different efficiencies depending on the pH and the type of buffer. However, the acquisition of enzymatic activity in the same buffer took place in a narrower pH "window," usually in the range of 3.6-4.2. N-terminal sequencing revealed that mature, inactive enzyme generated during autoactivation at higher pH contained N-terminal extensions (starting at 6 and 14 amino acid residues upstream of the prosegment/mature enzyme junction), which could contribute to the lack of activity of TPP I generated in this manner. Autoprocessing was not associated with any major changes of the secondary structure of the proenzyme, as revealed by CD spectroscopy. Both the activation and proteolytic processing of the recombinant TPP I precursor were primarily concentration-independent. The addition of the mature enzyme did not accelerate the processing of the proenzyme. In addition, the maturation of the proenzyme was not affected by the presence of glycerol. Finally, the proenzyme with the active site mutated (S475L) was not processed in the presence of the wild-type enzyme. All of these findings indicate a primarily intramolecular (unimolecular) mechanism of TPP I activation and autoprocessing and suggest that in vivo mature enzyme does not significantly participate in its own generation from the precursor.  相似文献   

3.
Procathepsin H in kidney and liver microsomal lumen was identified to have a molecular mass of 41 kDa by immunoblot analysis. The proenzyme was then concentrated by applying the microsomal contents to a concanavalin A-Sepharose column. When the concanavalin A-adsorbed fraction was incubated at pH 4.0 at 20 degrees C, the activity measured with synthetic substrate increased 3.5 times over that of the control after 24 h incubation. Immunoblot analysis showed that acidic treatment caused the disappearance of procathepsin H. Thus the proenzyme might be processed to the mature enzyme under acidic conditions. The marked increase of enzymatic activity and the conversion of proenzyme were completely blocked with pepstatin which is a potent inhibitor of aspartic proteases. These results suggested that a protease for processing procathepsin H might be cathepsin D, a major lysosomal aspartic protease. Therefore, procathepsin H seems to be synthesized first in the enzymatically inactive form in endoplasmic reticulum and successively converted into the active form in lysosomes during biosynthesis.  相似文献   

4.
Tripeptidyl-peptidase I (TPP I) is a lysosomal serine-carboxyl peptidase that sequentially removes tripeptides from polypeptides. Naturally occurring mutations in TPP I are associated with the classic late infantile neuronal ceroid lipofuscinosis. Human TPP I has five potential N-glycosylation sites at Asn residues 210, 222, 286, 313, and 443. To analyze the role of N-glycosylation in the function of the enzyme, we obliterated each N- glycosylation consensus sequence by substituting Gln for Asn, either individually or in combinations, and expressed mutated cDNAs in Chinese hamster ovary and human embryonic kidney 293 cells. Here, we demonstrate that human TPP I in vivo utilizes all five N-glycosylation sites. Elimination of one of these sites, at Asn-286, dramatically affected the folding of the enzyme. However, in contrast to other misfolded proteins that are retained in the endoplasmic reticulum, only a fraction of misfolded TPP I mutant expressed in Chinese hamster ovary cells, but not in human embryonic kidney 293 cells, was arrested in the ER, whereas its major portion was secreted. Secreted proenzyme formed non-native, interchain disulfide bridges and displayed only residual TPP I activity upon acidification. A small portion of TPP I missing Asn-286-linked glycan reached the lysosome and was processed to an active species; however, it showed low thermal and pH stability. N-Glycans at Asn-210, Asn-222, Asn-313, and Asn-443 contributed slightly to the specific activity of the enzyme and its resistance to alkaline pH-induced inactivation. Phospholabeling experiments revealed that N-glycans at Asn-210 and Asn-286 of TPP I preferentially accept a phosphomannose marker. Thus, a dual role of oligosaccharide at Asn-286 in folding and lysosomal targeting could contribute to the unusual, but cell type-dependent, fate of misfolded TPP I conformer and represent the molecular basis of the disease process in subjects with naturally occurring missense mutation at Asn-286.  相似文献   

5.
Tripeptidyl-peptidase I (TPPI) is an acidic lysosomal peptidase that removes tripeptides from an unmodified N-terminus of small proteins and polypeptides. In humans, TPP I constitutes an integral part of the lysosomal proteolytic apparatus, which, includes numerous hydrolytic enzymes, mostly cysteine proteases (cathepsin B, C, H, K, L, and others), but also serine (cathepsin A) and aspartic (cathepsin D) proteases. The combination of endo- and exopeptidase activities of these enzymes allows for efficient digestion of the diverse proteins transported to the lysosomes, releasing free amino acids and dipeptides that are transported back to the cytoplasm and reused according to the metabolic needs of the cell. The role of TPP I in normal lysosome functioning is underscored by the genetic association of the enzyme with one form of a group of the developmental neurodegenerative disorders of childhood--the neuronal ceroid lipofuscinoses (NCLs). The scope of this article is to review the most recent data, mostly from author's laboratory, on the biology and pathology of TPP I. NCLs are also shortly reviewed with the special emphasis on CLN2 form resulting from mutations in TPP I gene.  相似文献   

6.
Golabek AA  Kida E 《Biological chemistry》2006,387(8):1091-1099
The lysosomal lumen contains numerous acidic hydrolases involved in the degradation of carbohydrates, lipids, proteins, and nucleic acids, which are basic cell components that turn over continuously within the cell and/or are ingested from outside of the cell. Deficiency in almost any of these hydrolases causes accumulation of the undigested material in secondary lysosomes, which manifests itself as a form of lysosomal storage disorder (LSD). Mutations in tripeptidyl-peptidase I (TPP I) underlie the classic late-infantile form of neuronal ceroid lipofuscinoses (CLN2), the most common neurodegenerative disorders of childhood. TPP I is an aminopeptidase with minor endopeptidase activity and Ser475 serving as an active-site nucleophile. The enzyme is synthesized as a highly glycosylated precursor transported by mannose-6-phosphate receptors to lysosomes, where it undergoes proteolytic maturation. This review summarizes recent progress in understanding of TPP I biology and molecular pathology of the CLN2 disease process, including distribution of the enzyme, its biosynthesis, glycosylation, transport and activation, as well as catalytic mechanisms and their potential implications for pathogenesis and treatment of the underlying disease. Promising data from gene and stem cell therapy in laboratory animals raise hope that CLN2 will be the first neurodegenerative LSD for which causative treatment will become available for humans.  相似文献   

7.
Rubio LM  Flores E  Herrero A 《FEBS letters》1999,459(3):358-362
Cathepsin B and other lysosomal cysteine proteinases are synthesized as inactive zymogens, which are converted to their mature forms by other proteases or by autocatalytic processing. Procathepsin B autoactivation was shown in vitro at pH 4.5 to be a bimolecular process with K(s) and k(cat) values of 2.1+/-0.9 microM and 0.12+/-0.02 s(-1)6.0. However, in the presence of 0.5 microg/ml of dextran sulfate, relatively rapid processing is observed even at pH 6.5 (t(1/2) approximately 90 min), suggesting that glycosaminoglycans are involved in in vivo processing of lysosomal cysteine proteases.  相似文献   

8.
Alzheimer's disease (AD) is caused by the cerebral deposition of beta-amyloid (Abeta), a 38-43-amino acid peptide derived by proteolytic cleavage of the amyloid precursor protein (APP). Initial studies indicated that final cleavage of APP by the gamma-secretase (a complex containing presenilin and nicastrin) to produce Abeta occurred in the endosomal/lysosomal system. However, other studies showing a predominant endoplasmic reticulum localization of the gamma-secretase proteins and a neutral pH optimum of in vitro gamma-secretase assays have challenged this conclusion. We have recently identified nicastrin as a major lysosomal membrane protein. In the present work, we use Western blotting and immunogold electron microscopy to demonstrate that significant amounts of mature nicastrin, presenilin-1, and APP are co-localized with lysosomal associated membrane protein-1 (cAMP-1) in the outer membranes of lysosomes. Furthermore, we demonstrate that these membranes contain an acidic gamma-secretase activity, which is immunoprecipitable with an antibody to nicastrin. These experiments establish APP, nicastrin, and presenilin-1 as resident lysosomal membrane proteins and indicate that gamma-secretase is a lysosomal protease. These data reassert the importance of the lysosomal/endosomal system in the generation of Abeta and suggest a role for lysosomes in the pathophysiology of AD.  相似文献   

9.
Transfection of the human cathepsin K cDNA into CHO cells results in the expression of mature catalytically active 27-kDa protein and in cells secreting the 39-kDa proenzyme form. Monensin, which neutralizes the pH of acidic organelles, was found to inhibit intracellular processing of the proenzyme and to stimulate its secretion into the culture medium. Brefeldin A caused alterations in immunofluorescence staining consistent with interference of lysosomal targeting and inhibited both intracellular processing and secretion of cathepsin K. Inhibition of glycosylation by tunicamycin also abolished cathepsin K maturation. Furthermore, the processing of the proenzyme to the mature form was abolished by a single mutation of the terminal Met(329) to Ala. The triple mutation of Ser(325), Pro(327), and Met(329) (all to Ala) inhibited both maturation and secretion, using either transient or stable expression systems. The results indicate that intracellular maturation and secretion of cathepsin K can be affected differentially by various treatments and by mutations of the C-terminal end of the protein. These results are consistent with the involvement of both the secreted proenzyme and the intracellularly processed enzyme in cathepsin K-mediated processes.  相似文献   

10.
Procathepsin L self-association as a mechanism for selective secretion   总被引:1,自引:1,他引:0  
The lysosomal cysteine pro-protease procathepsin L was enriched in dense vesicles detectable when microsomes prepared from wild-type or transformed mouse fibroblasts were resolved on sucrose gradients. These dense vesicles did not comigrate with proteins characteristic of the endoplasmic reticulum, Golgi, endosomes or lysosomes. When gradient fraction vesicles were lysed at acidic pH in the presence of excess mannose 6-phosphate to prevent binding to mannose phosphate receptors, the majority of the procathepsin L was associated with the membrane, not the soluble, fraction. Immunogold labeling of procathepsin L in thin sections of cells or gradient fractions, using antibodies directed against the propeptide to avoid detection of the mature enzyme in dense lysosomes, revealed that the proenzyme was concentrated in dense cores localized in small vesicles near the plasma membrane and in multivesicular bodies. Consistent with the density of the gradient fraction and the electron density of the cores, yeast two-hybrid assays indicated the proenzyme could bind itself but could not interact with the aspartic proprotease procathepsin D. The data suggest that in mouse fibroblasts procathepsin L may self-associate into aggregates, initiating the formation of dense vesicles that could mediate the selective secretion of procathepsin L independent of mannose phosphate receptors.  相似文献   

11.
The subcellular distribution of dipeptidyl peptidase II (DPP II) in the rat kidney cortex, as determined by subfractionation of the mitochondrial/lysosomal fraction by rate sedimentation, indicated that this enzyme is mainly associated with the large, fast sedimenting lysosomes (protein droplets). The small lysosomes, on the other hand, displayed considerable size heterogeneity as indicated by the broad distribution of DPP II; cathepsin B, and a tripeptidyl peptidase active on Gly-Pro-Met-2-naphthylamide at pH 4 (TPP 4). Cathepsin D and N-acetyl-beta-D-glucosaminidase were limited primarily to the slower-sedimenting, small lysosomes. Equilibrium banding in sucrose gradients of the two main DPP II-containing lysosomal populations showed that the large lysosomes banded at a density of 1.235-1.24 g/ml while small lysosomes banded at three densities: 1.11-1.15 g/ml (lysosomal fragments), 1.20 g/ml (light lysosomes), and 1.235 g/ml (dense lysosomes). Identical distribution pattern were obtained for DPP II using either Lys-Ala-7-(4-methyl)coumarylamide or Gly-Pro-2-naphthylamide as the substrate at pH 5.5 and 5.0, respectively. Notably, DPP II and TPP 4, and cathepsin B as well, gave banding densities and distributions that were consistent with a lysosomal localization. Since triplets of the Gly-Pro-X-type released by the TPP 4 are ideal substrates for DPP II, the integrated action of tripeptidyl and dipeptidyl peptidases could make a novel contribution to the renal depolymerization and reabsorption of polypeptides, in particular the proline-rich, collagen-derived sequences that possess repeating-triplet primary structures.  相似文献   

12.
1. The activities of 30 different lysosomal enzymes were determined in vitro in the presence of the sulphated glycosaminoglycans, heparin and chondroitin sulphate, all the enzymes being measured on a density-gradient-purified lysosomal fraction. 2. Each enzyme was studied as a function of the pH of the incubation medium. In general the presence of sulphated glycosaminoglycans induced a strong pH-dependent inhibition of lysosomal enzymes at pH values lower than 5.0, with full activity at higher pH values. However, in the particular case of lysozyme and phospholipase A2 the heparin-induced inhibition was maintained in the pH range 4.0-7.0. 3. For certain enzymes, such as acid beta-glycerophosphatase, alpha-galactosidase, acid lipase, lysozyme and phospholipase A2, the pH-dependent behaviour obtained in the presence of heparin was quite different to that obtained with chondroitin sulphate, suggesting the existence of physicochemical characteristic factors playing a role in the intermolecular interaction for each of the sulphated glycosaminoglycans studied. 4. Except in the particular case of peroxidase activity, in all other lysosomal enzymes measured the glycosaminoglycan-enzyme complex formation was a temperature-and time-independent phenomenon. 5. The effects of the ionic strength and pH on this intermolecular interaction reinforce the concept of an electrostatic reversible interaction between anionic groups of the glycosaminoglycans and cationic groups on the enzyme molecule. 6. As leucocytic primary lysosomes have a very acid intragranular pH and large amounts of chondroitin sulphate, we propose that this glycosaminoglycan might act as molecular regulator of leucocytic activity, by inhibiting lysosomal enzymes when the intragranular pH is below the pI of lysosomal enzymes. This fact, plus the intravacuolar pH changes described during the phagocytic process, might explain the unresponsiveness of lysosomal enzymes against each other existing in primary lysosomes as well as its full activation at pH values occurring in secondary lysosomes during the phagocytic process.  相似文献   

13.
We purified tripeptidyl peptidase I (TPP I) to homogeneity from a rat kidney lysosomal fraction and determined its physicochemical properties, including its molecular weight, substrate specificity and partial amino acid sequence. The molecular weight of the enzyme was calculated to be 280,000 and 290,000 by non-denaturing PAGE and gel filtration, respectively, and to be 43 000 and 46 000 on SDS-PAGE in the absence and presence of beta-ME, respectively. These findings suggest that the enzyme is composed of six identical subunits. The Km, Vmax, kcat and kcat/Km values of TPP I at optimal pH (pH 4.0) were 680 microM, 3.7 micromol x mg(-1) x min(-1), 33.1 s(-1) and 4.87 x 10(4) s(-1) x M(-1) for Ala-Ala-Phe-MCA, respectively. TPP I was significantly inhibited by PCMBS and HgCl2, and moderately by DFP. These findings also suggest that TPP I is an exotype serine peptidase that is regulated by SH reagent. TPP I released the tripeptide Arg-Val-Tyr from angiotensin III more rapidly than from Ala-Ala-Phe-MCA, and also released Gly-Asn-Leu from neuromedin B with the same velocity as from Ala-Ala-Phe-MCA. Angiotensin III and neuromedin B have recently been found to be good natural substrates for lysosomal TPP I. Furthermore, we determined the rat liver cDNA structure and deduced the amino acid sequence. The cDNA, designated as lambdaRTI-1, is composed of 2485 bp and encodes 563 amino acids in the coding region. By Northern blot analysis, the order for TPP I mRNA expression was kidney > or = liver > heart > brain > lung > spleen > skeletal muscle and testis. In parallel experiments, the TPP I antigen was detected in various rat tissues by immunohistochemical staining.  相似文献   

14.
The plasma membrane proteins CD1a, CD1b and CD1c are expressed by human dendritic cells, the professional antigen-presenting cells of the immune system, and present lipid antigens to T lymphocytes. CD1e belongs to the same family of molecules, but accumulates as a membrane-associated form in the Golgi compartments of immature dendritic cells and as a soluble cleaved form in the lysosomes of mature dendritic cells. In lysosomes, the N-terminal propeptide of CD1e is also cleaved, but the functional consequences of this step are unknown. Here, we investigated how the pH changes encountered during transport to lysosomes affect the structure of CD1e and its ligand-binding properties. Circular dichroism studies demonstrated that the secondary and tertiary structures of recombinant CD1e were barely altered by pH changes. Nevertheless, at acidic pH, guanidium chloride-induced unfolding of CD1e molecules required lower concentrations of denaturing agent. The nonfunctional L194P allelic variant was found to be structurally less stable at acidic pH than the functional forms, providing an explanation for the lack of its detection in lysosomes. The number of water-exposed hydrophobic patches that bind 8-anilinonaphthalene-1-sulfonate was higher in acidic conditions, especially for the L194P variant. CD1e molecules interacted with lipid surfaces enriched in anionic lipids, such as bis(monoacylglycero)phosphate, a late endosomal/lysosomal lipid, especially at acidic pH, or when the propeptide was present. Altogether, these data indicate that, in the late endosomes/lysosomes of DCs, the acid pH promotes the binding of lipid antigens to CD1e through increased hydrophobic and ionic interactions.  相似文献   

15.
Human lysosomal alpha-galactosidase A (alpha-Gal A) was stably overexpressed in CHO cells and its biosynthesis and targeting were investigated. Clone AGA5.3-1000Mx, which was the highest enzyme overexpressor, produced intracellular alpha-Gal A levels of 20,900 U/mg (approximately 100 micrograms of enzyme/10(7) cells) and secreted approximately 13,000 U (or 75 micrograms/10(7) cells) per day. Ultrastructural examination of these cells revealed numerous 0.25-1.5 microns crystalline structures in dilated trans-Golgi network (TGN) and in lysosomes which stained with immunogold particles using affinity-purified anti-human alpha-Gal A antibodies. Pulse-chase studies revealed that approximately 65% of the total enzyme synthesized was secreted, while endogenous CHO lysosomal enzymes were not, indicating that the alpha-Gal A secretion was specific. The recombinant intracellular and secreted enzyme forms were normally processed and phosphorylated; the secreted enzyme had mannose-6-phosphate moieties and bound the immobilized 215-kD mannose-6-phosphate receptor (M6PR). Thus, the overexpressed enzyme's selective secretion did not result from oversaturation of the M6PR-mediated pathway or abnormal binding to the M6PR. Of note, the secreted alpha-Gal A was sulfated and the percent of enzyme sulfation decreased with increasing amplification, presumably due to the inaccessibility of the enzyme's tyrosine residues for the sulfotransferase in the TGN. Overexpression of human lysosomal alpha-N-acetylgalactosaminidase and acid sphingomyelinase in CHO cell lines also resulted in their respective selective secretion. In vitro studies revealed that purified secreted alpha-Gal A was precipitated as a function of enzyme concentration and pH, with 30% of the soluble enzyme being precipitated when 10 mg/ml of enzyme was incubated at pH 5.0. Thus, it is hypothesized that these overexpressed lysosomal enzymes are normally modified until they reach the TGN where the more acidic environment of this compartment causes the formation of soluble and particulate enzyme aggregates. A significant proportion of these enzyme aggregates are unable to bind the M6PR and are selectively secreted via the constitutive secretory pathway, while endogenous lysosomal enzymes bind the M6PRs and are transported to lysosomes.  相似文献   

16.
An alternate targeting pathway for procathepsin L in mouse fibroblasts   总被引:2,自引:0,他引:2  
In transformed mouse fibroblasts, a significant proportion of the lysosomal cysteine protease cathepsin L remains in cells as an inactive precursor which associates with membranes by a mannose phosphate-independent interaction. When microsomes prepared from these cells were resolved on sucrose gradients, this procathepsin L was localized in dense vesicles distinct from those enriched for growth hormone, which is secreted constitutively when expressed in fibroblasts. Ultrastructural studies using antibodies directed against the propeptide to avoid detection of the mature enzyme in lysosomes revealed that the proenzyme was concentrated in dense cores within small vesicles and multivesicular endosomes which labeled with antibodies specific for CD63. Consistent with the resemblance of these cores to those of regulated secretory granules, secretion of procathepsin L from fibroblasts was modestly stimulated by phorbol, 12-myristate, 13-acetate. When protein synthesis was blocked with cycloheximide and lysosomal proteolysis inhibited with leupeptin, procathepsin L was found to gradually convert to the active single-chain protease. The data suggest that when synthesis levels are high, a portion of the procathepsin L is packaged in dense cores within multivesicular endosomes localized near the plasma membrane. Gradual activation of this proenzyme achieves targeting of the proenzyme to lysosomes by a mannose phosphate receptor-independent pathway.  相似文献   

17.
We have quantified, in cultured rat fibroblasts, the association to the lysosomal membrane of two classical plasma membrane markers, 5'-nucleotidase and alkaline phosphodiesterase I. To isolate highly purified lysosomal preparations, lysosomes were loaded with horseradish peroxidase (2-h cell uptake, 16-h chase) and isolated by isopycnic centrifugation in linear Percoll gradients, followed by a 3,3'-diaminobenzidine-induced density shift in sucrose gradients. Purified lysosomal preparations contained up to 50% of N-acetyl-beta-glucosaminidase of the homogenate. This lysosomal enzyme was enriched 33-fold in the most purified preparations. In the electron microscope, these preparations appeared to be highly purified and only contained organelles filled with diaminobenzidine reaction products. Analysis of purified preparations indicates that 0.5-0.8% of 5'-nucleotidase, but as much as 10.9-14.3% of alkaline phosphodiesterase I activities of the homogenate, are associated with lysosomes. After freezing-thawing, these activities remained essentially membrane-associated. The larger value obtained for alkaline phosphodiesterase I could not be ascribed to other lysosomal enzymes, as no such activity was detected at acidic pH. These two plasma membrane markers are thus unevenly distributed in the lysosomal compartment.  相似文献   

18.
Cathepsin S is unique among mammalian cysteine cathepsins in being active and stable at neutral pH. We show that autocatalytic activation of procathepsin S at low pH is a bimolecular process that is considerably accelerated (approximately 20-fold) by glycosaminoglycans and polysaccharides such as dextran sulfate, chondroitin sulfates A and E, and dermatan sulfate through electrostatic interaction with the proenzyme. Procathepsin S is also shown to undergo autoactivation at neutral pH in the presence of dextran sulfate with t1/2 of approximately 20 min at pH 7.5. This novel property of procathepsin S may have implications in pathological conditions associated with the appearance of active cathepsins outside lysosomes.  相似文献   

19.
We recently identified a gamma-interferon-inducible lysosomal thiol reductase (GILT), constitutively expressed in antigen-presenting cells, that catalyzes disulfide bond reduction both in vitro and in vivo and is optimally active at acidic pH. GILT is synthesized as a 35-kDa precursor, and following delivery to major histocompatibility complex (MHC) class II-containing compartments (MIICs), is processed to the mature 30-kDa form via cleavage of N- and C-terminal propeptides. The generation of MHC class II epitopes requires both protein denaturation and reduction of intra- and inter-chain disulfide bonds prior to proteolysis. GILT may be important in disulfide bond reduction of proteins delivered to MIICs and consequently in antigen processing. In this report we show that, like its mature form, precursor GILT reduces disulfide bonds with an acidic pH optimum, suggesting that it may also be involved in disulfide bond reduction in the endocytic pathway. We also show that processing of precursor GILT can be mediated by multiple lysosomal proteases and provide evidence that the mechanism of action of GILT resembles that of other thiol oxidoreductases.  相似文献   

20.
Tripeptidyl peptidase I (TPP I) is the first mammalian representative of a family of pepstatin-insensitive serine-carboxyl proteases, or sedolisins. The enzyme acts in lysosomes, where it sequentially removes tripeptides from the unmodified N terminus of small, unstructured polypeptides. Naturally occurring mutations in TPP I underlie a neurodegenerative disorder of childhood, classic late infantile neuronal ceroid lipofuscinosis (CLN2). Generation of mature TPP I is associated with removal of a long prosegment of 176 amino acid residues from the zymogen. Here we investigated the inhibitory properties of TPP I prosegment expressed and isolated from Escherichia coli toward its cognate protease. We show that the TPP I prosegment is a potent, slow-binding inhibitor of its parent enzyme, with an overall inhibition constant in the low nanomolar range. We also demonstrate the protective effect of the prosegment on alkaline pH-induced inactivation of the enzyme. Interestingly, the inhibitory properties of TPP I prosegment with the introduced classic late infantile neuronal ceroid lipofuscinosis disease-associated mutation, G77R, significantly differed from those revealed by wild-type prosegment in both the mechanism of interaction and the inhibitory rate. This is the first characterization of the inhibitory action of the sedolisin prosegment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号