首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of apolipoproteins B and C were studied in 14 normal and hyperlipoproteinemic subjects after injection of exogenously (125)I-labeled very low density lipoprotein (VLDL) particles. Plasma radioactivities of apoB and apoC were determined over a period of 4 days in VLDL (d < 1.006) and total radioactivity in intermediate (IDL) (1.006 < d < 1.019), low (LDL) (1.019 < d < 1.063), and high (HDL) (1.063 < d < 1.21) density lipoproteins. The data were analyzed by the use of a model, developed mostly from these data, with the following results. The VLDL particle undergoes a series of incremental density changes, most likely due to a number of delipidation steps, during which apoB stays with the particle until the density reaches the IDL range. There is, however, a loss of apoC associated with these delipidation steps. In our normal subjects, all IDL apoB eventually becomes LDL. In our hyperlipemic subjects some of the apoB on IDL is also degraded directly. The apoC lost by VLDL and IDL recycles to HDL, and most of it is picked up again by newly synthesized VLDL. There is a slowdown of the stepwise delipidation process in all hyperlipemic individuals studied. Three additional features became apparent in the type III subjects. First, there is a significant increase (a factor of 2 compared to normal) in the apoB synthesis rate by way of VLDL; second, there is an induced direct apoB synthesis pathway by way of IDL (and/or LDL); third, a bypass of the regular stepwise VLDL delipidation pathway is induced by which VLDL particles lose apoC but none of their apoB, thereby forming a new particle with metabolic properties similar to LDL, but with a density still in the VLDL density range. Two type III patients treated with nicotinic acid and clofibrate showed a sharp decrease in their VLDL apoB synthesis rates. This was somewhat compensated by an increased IDL apoB synthesis rate. A type I patient on a medium chain triglyceride diet also showed a number of metabolic changes, including reduced VLDL apoB synthesis and the induction of considerable IDL and/or LDL apoB synthesis.  相似文献   

2.
To study the metabolic pathways of apolipoprotein B (apoB), a series of studies were carried out in which both radioiodinated very low density lipoproteins (VLDL) and tritiated leucine were simultaneously injected into three hypertriglyceridemic subjects. The appearance and disappearance of tritium activity in VLDL apoB, intermediate density lipoprotein (IDL) apoB, and low density lipoprotein (LDL) apoB were followed as was the disappearance of iodine activity from VLDL and the appearance and disappearance of iodine activity in IDL apoB and LDL apoB. It was found that a delipidation chain could describe the kinetics of both endogenously and exogenously labeled VLDL. A slow component of VLDL was necessary to fit the VLDL 131I-labeled apoB data and was consistent with the observed VLDL [3H]apoB kinetics. In addition, the estimated rate of conversion of VLDL apoB to LDL exceeded that which appeared to pass through the measured IDL pools, suggesting that a fraction of the IDL was not directly observed. It was also found that a higher percentage of VLDL 131I-labeled apoB was converted to LDL apoB than was VLDL [3H]apoB. To evaluate possible causes of this apparent anomaly, simultaneous examination of all kinetic data was performed. This exercise resulted in the resolution of removal pathways from multiple compartments in the VLDL delipidation chain and the conversion of slowly metabolized VLDL to IDL and LDL. The wide spectrum of this loss pathway indicates that previous estimates of VLDL apoB production rate using the radioiodinated methodology probably represent lower bounds for the true physiologic variable. It is important to note that these direct losses were apparent only when the combination of endogenous and exogenous labeling was used.  相似文献   

3.
The kinetics of apolipoprotein B (apoB) were measured in seven studies in heterozygous, familial hypercholesterolemic subjects (FH) and in five studies in normal subjects, using in vivo tracer kinetic methodology with a [3H]leucine tracer. Very low density (VLDL) and low density lipoproteins (LDL) were isolated ultracentrifugally and LDL was fractionated into high and low molecular weight subspecies. ApoB was isolated, its specific radioactivity was measured, and the kinetic data were analyzed by compartmental modeling using the SAAM computer program. The pathways of apoB metabolism differ in FH and normal subjects in two major respects. Normals secrete greater than 90% of apoB as VLDL, while one-third of apoB is secreted as intermediate density lipoprotein IDL/LDL in FH. Normals lose 40-50% of apoB from plasma as VLDL/IDL, while FH subjects lose none, metabolizing all of apoB to LDL. In FH, there is also the known prolongation of LDL residence time. The leucine tracer, biosynthetically incorporated into plasma apoB, permits distinguishing the separate pathways by which the metabolism of apoB is channeled. ApoB synthesis and secretion require 1.3 h. ApoB is secreted by three routes: 1) as large VLDL where it is metabolized by a delipidation chain; 2) as a rapidly metabolized VLDL fraction converted to LDL; and 3) as IDL or LDL. ApoB is metabolized along two pathways. The delipidation chain processes large VLDL to small VLDL, IDL, and LDL. The IDL pathway channels nascent, rapidly metabolized VLDL and IDL particles into LDL. It thus provides a fast pathway for the entrance of apoB tracer into LDL, while the delipidation pathway is a slower route for channeling apoB through VLDL into LDL. LDL apoB is derived in almost equal amounts from both pathways, which feed predominantly into large LDL. Small LDL is a product of large LDL, and the major loss of LDL-apoB is from small LDL. Two features of apoB metabolism in FH, the major secretory pathway through IDL and the absence of a catabolic loss of apoB from VLDL/IDL, greatly facilitate measuring the metabolic channeling of apoB into LDL.  相似文献   

4.
The effect of apolipoprotein (apo) E genotype on apoB-100 metabolism was examined in three normolipidemic apoE2/E2, five type III hyperlipidemic apoE2/E2, and five hyperlipidemic apoE3/E2 subjects using simultaneous administration of 131I-VLDL and 125I-LDL, and multi-compartmental modeling. Compared with normolipidemic apoE2/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased plasma and VLDL cholesterol, plasma and VLDL triglycerides, and VLDL and intermediate density lipoprotein (IDL) apoB concentrations (P < 0.05). These abnormalities were chiefly a consequence of decreased VLDL and IDL apoB fractional catabolic rate (FCR). Compared with hyperlipidemic E3/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased IDL apoB concentration and decreased conversion of IDL to LDL particles (P < 0.05). In a pooled analysis, VLDL cholesterol was positively associated with VLDL and IDL apoB concentrations and the proportion of VLDL apoB in the slowly turning over VLDL pool, and was negatively associated with VLDL apoB FCR after adjusting for subject group. VLDL triglyceride was positively associated with VLDL apoB concentration and VLDL and IDL apoB production rates after adjusting for subject group. A defective apoE contributes to altered lipoprotein metabolism but is not sufficient to cause overt hyperlipidemia. Additional genetic mutations and environmental factors, including insulin resistance and obesity, may contribute to the development of type III hyperlipidemia.  相似文献   

5.
Apolipoprotein B (apoB) metabolism was investigated in 20 men with plasma triglyceride 0.66-2.40 mmol/l and plasma cholesterol 3.95-6. 95 mmol/l. Kinetics of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), IDL (S(f) 12-20), and LDL (S(f) 0;-12) apoB were analyzed using a trideuterated leucine tracer and a multicompartmental model which allowed input into each fraction. VLDL(1) apoB production varied widely (from 5.4 to 26.6 mg/kg/d) as did VLDL(2) apoB production (from 0.18 to 8.4 mg/kg/d) but the two were not correlated. IDL plus LDL apoB direct production accounted for up to half of total apoB production and was inversely related to plasma triglyceride (r = -0.54, P = 0.009). Percent of direct apoB production into the IDL/LDL density range (r = 0.50, P < 0.02) was positively related to the LDL apoB fractional catabolic rate (FCR). Plasma triglyceride in these subjects was determined principally by VLDL(1) and VLDL(2) apoB fractional transfer rates (FTR), i.e., lipolysis. IDL apoB concentration was regulated mainly by the IDL to LDL FTR (r = -0.71, P < 0.0001). LDL apoB concentration correlated with VLDL(2) apoB production (r = 0.48, P = 0.018) and the LDL FCR (r = -0.77, P < 0. 001) but not with VLDL(1), IDL, or LDL apoB production. Subjects with predominantly small, dense LDL (pattern B) had lower VLDL(1) and VLDL(2) apoB FTRs, higher VLDL(2) apoB production, and a lower LDL apoB FCR than those with large LDL (pattern A). Thus, the metabolic conditions that favored appearance of small, dense LDL were diminished lipolysis of VLDL, resulting in a raised plasma triglyceride above the putative threshold of 1.5 mmol/l, and a prolonged residence time for LDL. This latter condition presumably permitted sufficient time for the processes of lipid exchange and lipolysis to generate small LDL particles.  相似文献   

6.
Very low density lipoprotein (VLDL) and low density lipoprotein (LDL) apoprotein (apo)-B turnover rates were measured simultaneously by injecting 131I-labeled VLDL and 125I-labeled LDL into fasting baboons (Papio sp.) selectively bred for high serum cholesterol levels and having either low or high LDL levels. The radioactivities in VLDL, intermediate density lipoprotein (IDL), LDL apoB, and urine were measured at intervals between 5 min and 6 days. Kinetic parameters for apoB were calculated in each baboon fed a chow diet or a high cholesterol, high fat diet (HCHF). VLDL apoB residence times were similar in the two groups of animals fed chow; they were increased by HCHF feeding in high LDL animals, but not in low LDL animals. Production rates of VLDL apoB were decreased by the HCHF diet in both high and low LDL animals. Most of the radioactivity from VLDL apoB was transferred to IDL. However, a greater proportion of radioactivity was removed directly from IDL apoB in low LDL animals than in high LDL animals, and only about one-third appeared in LDL. In high LDL animals, a greater proportion of this radioactivity was converted to LDL (61.4 +/- 7.2% in chow-fed animals and 49.2 +/- 10.9% in animals fed the HCHF diet; mean +/- SEM, n = 5). Production rates for LDL apoB were higher in high LDL animals than those in low LDL animals on both diets. The HCHF diet increased residence times of LDL apoB without changing production rates in both groups. VLDL apoB production was not sufficient to account for LDL apoB production in high LDL animals, a finding that suggested that a large amount of LDL apoB was derived from a source other than VLDL apoB in these animals.  相似文献   

7.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

8.
A method is described for the rapid, selective, and quantitative precipitation of apolipoprotein B from isolated hypercholesterolemic rabbit and human very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL). Lipoprotein samples are heat-treated at 100 degrees C in 1% SDS. The denatured apoprotein solutions are then mixed briefly with two volumes of butanol-isopropyl ether 45:55 (v/v) to precipitate the apoB. The supernatant solutions, containing the non-apoB proteins and lipids, are removed and the apoB pellet is washed once with water. To determine apoB specific activity, the apoB pellet is resolubilized in 0.5 M NaOH by heating for 30 min at 120 degrees C. The hydrolyzed apoB protein is quantitated by fluorescence of a fluorescamine derivative. The precipitation of apoB is quantitative and selective: 99.5% of rabbit 125I-labeled LDL-apoB and 97.5% of human 125I-labeled LDL-apoB is precipitated and less than 5% of 125I-labeled HDL added to unlabeled VLDL, IDL, or LDL is precipitated. Triglyceride and cholesteryl ester contamination of the apoB pellet is less than 2% of their original radioactivities.  相似文献   

9.
Previous studies established that following simultaneous injection of 125I-labeled homologous very low density lipoproteins (VLDL) and 131I-labeled homologous low density lipoproteins (LDL) into miniature pigs, a large proportion of LDL apolipoprotein B (apoB) was synthesized directly, independent of VLDL or intermediate density lipoprotein (IDL) apoB catabolism. The possibility that cholestyramine alone (a bile acid sequestrant) or in combination with mevinolin (a cholesterol synthesis inhibitor) could regulate the direct LDL apoB synthetic pathway was investigated. 125I-labeled VLDL and 131I-labeled LDL were injected into miniature pigs (n = 8) during a control period and following 18 days of cholestyramine treatment (1.0 g kg-1d-1) or following 18 days of treatment with cholestyramine and mevinolin (1.2 mg kg-1d-1). ApoB in each lipoprotein fraction was selectively precipitated using isopropanol in order to calculate specific activity. In control experiments, LDL apoB specific activity curves reached their peak values well before crossing the VLDL or IDL apoB curves. However, cholestyramine treatment resulted in LDL apoB curves reaching maximal values much closer to the point of intersection with the VLDL or IDL curves. Kinetic analyses demonstrated that cholestyramine reduced total LDL apoB flux by 33%, which was due entirely to inhibition of the LDL apoB direct synthesis pathway since VLDL-derived apoB was unaffected. In addition, the LDL apoB pool size was reduced by 30% and the fractional catabolic rate of LDL apoB was increased by 16% with cholestyramine treatment. The combination of mevinolin and cholestyramine resulted in an even more marked inhibition of the direct LDL apoB synthesis pathway (by 90%), and in two animals this pathway was completely abolished. This inhibition was selective as VLDL-derived LDL apoB synthesis was not significantly different. LDL apoB pool size was reduced by 60% due primarily to the reduced synthesis as well as a 40% greater fractional removal rate. These results are consistent with the idea that cholestyramine and mevinolin increase LDL catabolism by inducing hepatic apoB, E receptors. We have now shown that the direct synthesis of LDL apoB is selectively inhibited by these two drugs.  相似文献   

10.
Apolipoprotein B metabolism in homozygous familial hypercholesterolemia   总被引:5,自引:0,他引:5  
This report describes the metabolism of apolipoprotein B-containing lipoproteins in seven familial hypercholesterolemic (FH) homozygotes and compares the results to the values obtained from five healthy control subjects. The concentration, composition, and metabolism of large, triglyceride-rich very low density lipoproteins (VLDL1, Sf 60-400) were the same in the control and FH groups, indicating that this component of the VLDL delipidation cascade ws unaffected by the absence of receptors. In contrast, familial hypercholesterolemic small VLDL2 (Sf 20-60) was enriched with cholesterol and depleted in triglyceride. Moreover, its plasma concentration was elevated as a result of an increase in its synthesis and a defect in the removal of a remnant population within this density interval. The latter accounted for up to 50% of the total mass of the fraction. Onward transfer of apolipoprotein B (apoB) from small VLDL through intermediate density lipoprotein (IDL) to low density lipoprotein (LDL) was retarded, suggesting that receptors were involved in this supposedly lipase-mediated event. IDL and LDL concentrations increased up to fourfold above normal in the plasma of the FH patients due partly to the delay in maturation and partly to defective direct catabolism. We conclude that the LDL receptor plays multiple and important roles in the metabolism and transformation of apoB-containing particles in the Sf 0-400 flotation interval.  相似文献   

11.
In vitro lipolysis of very low density lipoprotein (VLDL) from normolipidemic and familial dysbetalipoproteinemic plasma by purified bovine milk lipoprotein lipase was studied using the combined single vertical spin and vertical autoprofile method of lipoprotein analysis. Lipolysis of normolipidemic plasma supplemented with autologous VLDL resulted in the progressive transformation of VLDL to low density lipoprotein (LDL) via intermediate density lipoprotein (IDL) with the transfer of the excess cholesterol to high density lipoprotein (HDL). At the end of 60 min lipolysis, 92-96% of VLDL triglyceride was hydrolyzed, and, with this process, greater than 95% of the VLDL cholesterol and 125-I-labeled VLDL protein was transferred from the VLDL to the LDL and HDL density region. When VLDL from the plasma of an individual with familial dysbetalipoproteinemia was substituted for VLDL from normolipidemic plasma, less than 50% of the VLDL cholesterol and 65% of 125I-labeled protein was removed from the VLDL density region, although 84-86% of VLDL triglyceride was lipolyzed. Analysis of familial dysbetalipoproteinemic VLDL fractions from pre- and post-lipolyzed plasma showed that the VLDL remaining in the postlipolyzed plasma (lipoprotein lipase-resistant VLDL) was richer in cholesteryl ester and tetramethylurea-insoluble proteins than that from prelipolysis plasma; the major apolipoproteins in the lipoprotein lipase-resistant VLDL were apoB and apoE. During lipolysis of normolipidemic VLDL containing trace amounts of 125I-labeled familial dysbetalipoproteinemic VLDL, removal of VLDL cholesterol was nearly complete from the VLDL density region, while removal of 125I-labeled protein was only partial. A competition study for lipoprotein lipase, comparing normolipidemic and familial dysbetalipoproteinemic VLDL to an artificial substrate ([3H]triolein), revealed that normolipidemic VLDL is clearly better than familial dysbetalipoproteinemic VLDL in competing for the release of 3H-labeled free fatty acids. The results of this study suggest that, in familial dysbetalipoproteinemic individuals, a subpopulation of VLDL rich in cholesteryl ester, apoB, and apoE is resistant to in vitro conversion by lipoprotein lipase to particles having LDL-like density. The presence of this lipoprotein lipase-resistant VLDL in familial dysbetalipoproteinemic subjects likely contributes to the increased level of cholesteryl ester-rich VLDL and IDL in the plasma of these subjects.  相似文献   

12.
Prior moderate exercise reduces plasma triglyceride (TG)-rich lipoprotein concentrations, mainly in the large very low-density lipoprotein (VLDL?) fraction, but the mechanism responsible is unclear. We investigated the effects of brisk walking on TG-rich lipoprotein kinetics using a novel method. Twelve overweight/obese middle-aged men underwent two kinetic studies, involving infusion of Intralipid to block VLDL? catabolism, in random order. On the afternoon prior to infusion, subjects either walked on a treadmill for 2 h at ~50% maximal oxygen uptake or performed no exercise. Multiple blood samples were taken during and after infusion for separation of Intralipid (S(f) 400) and VLDL? (S(f) 60-400). VLDL?-TG and -apoB production rates were calculated from their linear rises during infusion; fractional catabolic rates (FCR) were calculated by dividing linear rises by fasting concentrations. Intralipid-TG FCR was determined from the postinfusion exponential decay. Exercise reduced fasting VLDL?-TG concentration by 30% (P = 0.007) and increased TG enrichment of VLDL? particles [30% decrease in cholesteryl ester (CE)/TG ratio (P = 0.007); 26% increase in TG/apoB ratio (P = 0.059)]. Exercise also increased VLDL?-TG, VLDL?-apoB, and Intralipid-TG FCRs by 82, 146, and 43%, respectively (all P < 0.05), but had no significant effect on VLDL?-TG or -apoB production rates. The exercise-induced increase in VLDL?-apoB FCR correlated strongly with the exercise-induced changes in VLDL? CE/TG (r = -0.659, r = 0.020) and TG/apoB (r = 0.785, P = 0.002) ratios. Thus, exercise-induced reductions in VLDL? concentrations are mediated by increased catabolism, rather than reduced production, which may be facilitated by compositional changes to VLDL? particles that increase their affinity for clearance from the circulation.  相似文献   

13.
Rats treated with the contraceptive steroid d-norgestrel have lower plasma very low density lipoprotein (VLDL)-triglycerides and higher low density lipoprotein (LDL)-cholesterol than controls. To explain these results, the kinetics of VLDL and LDL turnover were studied by injecting 125I-labeled rat-VLDL and 131I-labeled rat-LDL simultaneously into rats treated with a small dose of d-norgestrel (4 micrograms per day per kg body weight0.75 for 18 days, n = 22) and their untreated controls (n = 22). VLDL- and LDL-apoB specific activity-time curves obtained over 50 hr best conformed to a three-pool model. VLDL-apoB clearance expressed as irreversible catabolic rate (k01) was markedly enhanced in the treated versus control rats (0.57 vs. 0.34 pools hr-1), leading to a marked reduction in VLDL-apoB pool size (270 vs. 420 micrograms). However, VLDL-apoB production rates were similar in the two groups (160 vs. 140 micrograms/hr, respectively). The 125I-labeled apoB specific activity-time curve derived from the catabolism of 125I-labeled VLDL-apoB also showed enhanced clearance in d-norgestrel-treated rats. 125I-Labeled IDL-apoB and 125I-labeled LDL-apoB specific activity-time curves failed to intersect the VLDL-apoB curve at maximal heights, suggesting input of intermediate density lipoprotein (IDL) and LDL independent of VLDL catabolism in both groups. However, the extent of independent LDL-apoB production was similar in both groups. Clearance of 131I-labeled LDL-apoB following injection of 131I-labeled rat-LDL was delayed in the d-norgestrel-treated versus control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Rabbits fed low-fat, cholesterol-free, semi-purified diets containing casein developed a marked hypercholesterolemia compared to rabbits fed a similar diet containing soy protein (plasma cholesterol 281 +/- 31 vs. 86 +/- 9 mg/dl; P less than 0.05). Turnover studies (three per dietary group) were carried out in which homologous 125I-labeled VLDL and 131I-labeled LDL were injected simultaneously into casein- (n = 8) or soy protein- (n = 9) fed rabbits. ApoB-specific activities were determined in VLDL, IDL and LDL isolated from the pooled plasma of two or three rabbits per dietary group. The production rate of VLDL apoB (1.20 +/- 0.3 vs. 1.09 +/- 0.1 mg/h per kg) was similar for the two dietary groups. The fractional catabolic rate of VLDL apoB was lower for the casein group (0.15 +/- 0.03 vs. 0.23 +/- 0.01.h-1; 0.05 less than P less than 0.10). Although the pool size of VLDL apoB was higher in the casein group (8 +/- 2 vs. 5 +/- 0.3 mg/kg), this value did not reach statistical significance. For LDL apoB, the increased pool size in casein-fed rabbits (30 +/- 5 vs. 5 +/- 1 mg/kg; P less than 0.01) was associated with a decreased fractional catabolic rate (0.03 +/- 0.005 vs. 0.08 +/- 0.008.h-1; P less than 0.01) and a 2-fold increase in the production rate of LDL apoB (1 +/- 0.3 vs. 0.4 +/- 0.06 mg/kg per h; 0.05 less than P less than 0.10) compared to rabbits fed soy protein. Analysis of precursor-product relationships between the various lipoprotein fractions showed that casein-fed rabbits synthesized a higher proportion of LDL apoB (95% +/- 2 vs. 67% +/- 2; P less than 0.001) independent of VLDL catabolism. These results support the concept that the hypercholesterolemia in casein-fed rabbits is associated with impaired LDL removal consistent with a down-regulation of LDL receptors. These changes do not occur when the casein is replaced by soy protein.  相似文献   

15.
Objective: The metabolic syndrome is characterized by defective hepatic apolipoprotein B‐100 (apoB) metabolism. Hepato‐intestinal cholesterol metabolism may contribute to this abnormality. Research Methods and Procedures: We examined the association of cholesterol absorption and synthesis with the kinetics of apoB in 35 obese subjects with the metabolic syndrome. Plasma ratios of campesterol and lathosterol to cholesterol were used to estimate cholesterol absorption and synthesis, respectively. Very‐low‐density lipoprotein (VLDL), intermediate‐density lipoprotein (IDL), and low‐density lipoprotein apoB kinetics were studied using stable isotopy and mass spectrometry. Kinetic parameters were derived using multicompartmental modeling. Results: Compared with controls, the obese subjects had significantly lower plasma ratios of campesterol, but higher plasma ratios of lathosterol (p < 0.05 in both). This was associated with elevated VLDL‐apoB secretion rate (p < 0.05) and delayed fractional catabolism of IDL and low‐density lipoprotein‐apoB (p < 0.01). In the obese group, plasma ratios of campesterol correlated inversely with VLDL‐apoB secretion (r = ?0.359, p < 0.05), VLDL‐apoB (r = ?0.513, p < 0.01) and IDL‐apoB (r = ?0.511, p < 0.01) pool size, and plasma lathosterol ratio (r = ?0.366, p < 0.05). Subjects with low cholesterol absorption had significantly higher VLDL‐apoB secretion, VLDL‐apoB and IDL‐apoB pool size, and plasma lathosterol ratio (p < 0.05 in both) than those with high cholesterol absorption. Discussion: Subjects with the metabolic syndrome have oversecretion of VLDL‐apoB and decreased catabolism of apoB‐containing particles and low absorption and high synthesis rates of cholesterol. These changes in cholesterol homeostasis may contribute to the kinetic defects in apoB metabolism in the metabolic syndrome.  相似文献   

16.
Isotopic tracer methods of determining triglyceride-rich lipoprotein (TRL) kinetics are costly, time-consuming, and labor-intensive. This study aimed to develop a simpler and cost-effective method of obtaining TRL kinetic data, based on the fact that chylomicrons compete with large VLDL (VLDL(1); S(f) = 60-400) for the same catalytic pathway. Ten healthy subjects [seven men; fasting triglyceride (TG), 44.3-407.6 mg/dl; body mass index, 21-35 kg/m(2)] were given an intravenous infusion of a chylomicron-like TG emulsion (Intralipid; 0.1 g/kg bolus followed by 0.1 g/kg/h infusion) for 75-120 min to prevent the clearance of VLDL(1) by lipoprotein lipase. Multiple blood samples were taken during and after infusion for separation of Intralipid, VLDL(1), and VLDL(2) by ultracentrifugation. VLDL(1)-apolipoprotein B (apoB) and TG production rates were calculated from their linear increases in the VLDL(1) fraction during the infusion. Intralipid-TG clearance rate was determined from its exponential decay after infusion. The production rates of VLDL(1)-apoB and VLDL(1)-TG were (mean +/- SEM) 25.4 +/- 3.9 and 1,076.7 +/- 224.7 mg/h, respectively, and the Intralipid-TG clearance rate was 66.9 +/- 11.7 pools/day. Kinetic data obtained from this method agree with values obtained from stable isotope methods and show the expected relationships with indices of body fatness and insulin resistance (all P < 0.05). The protocol is relatively quick, inexpensive, and transferable to nonspecialist laboratories.  相似文献   

17.
Apolipoprotein (apo) E and apoC-III concentrations in VLDL and LDL are associated with coronary heart disease. We studied the relationship between apoE and apoC-III and the abnormal concentrations and distribution of apoB lipoproteins in 10 hypercholesterolemic and 13 hypertriglyceridemic patients compared with 12 normolipidemic subjects (mean age, 45 years). Sixteen distinct types of apoB lipoprotein particles were separated by first using anti-apoE and anti-apoC-III immunoaffinity chromatography in sequence and then ultracentrifugation [light VLDL, dense VLDL, IDL, and LDL, with apoE with or without apoC-III (E(+)C-III(+), E(+)C-III(-)) or without apoE with or without apoC-III (E(-)C-III(+), E(-)C-III(-))]. The concentrations of VLDL particles with apoC-III (E(+)C-III(+), E(-)C-III(+)) were increased in the hypertriglyceridemic group compared with the hypercholesterolemic and normolipidemic groups. These particles were the most triglyceride rich of the particle types, and their triglyceride content was twice as high in hypertriglyceridemics compared with the other two groups. Hypertriglyceridemics had a similar concentration of total E(-)C-III(-) particles compared with normolipidemics, but the E(-)C-III(-) particles were distributed more to VLDL and IDL than to LDL. Hypercholesterolemics, in contrast, were distinguished from the normolipidemic group by 2-fold higher concentrations of apoB lipoproteins without apoE or apoC-III (E(-)C-III(-)), mainly LDL, which had high cholesterol content. Nonetheless, both normolipidemics and hypercholesterolemics had apoC-III-containing VLDL, which comprised 68% and 43% of their total VLDL particles. E(+)C-III(-) particles were a minor type, comprising <10% of particles in all lipoproteins and patient groups. Therefore, VLDL particles with apoC-III may play a central role in identifying the high risk of coronary heart disease in hypertriglyceridemia, but their substantial prevalence in normolipidemics may be of clinical significance as well.  相似文献   

18.
The St. Thomas' mixed hyperlipidemic (SMHL) rabbit (previously St. Thomas' Hospital rabbit) is a putative model of familial combined hyperlipidemia (FCH). When fed a low (0.08%) cholesterol diet, it exhibits elevations in both plasma cholesterol and triglyceride compared to New Zealand White (NZW) controls. To determine the mechanism for this hyperlipidemia we studied the secretion of apolipoprotein B (apoB)-containing lipoproteins from perfused livers of both young and mature rabbits. During a 3-h perfusion we measured the total cholesterol and triglyceride content of the medium and the cholesterol, triglyceride, and apoB content of very low density lipoprotein (VLDL)(1) (S(f) 60;-400), VLDL(2) (S(f) 20;-60), intermediate (S(f) 12;-20), and low (S(f) 0;-12) density lipoproteins (IDL, LDL). Lipoprotein concentrations increased linearly throughout the perfusion period. The rate of cholesterol output was 3-fold higher (459 vs. 137 ng/g liver/min, P = 0.003) in SMHL versus NZW rabbits whilst that of triglyceride was similar (841 vs. 662 ng/g liver/min, NS). VLDL(1) cholesterol output was elevated 2-fold (232 vs. 123 ng/g liver/min, P < 0.05) and VLDL(2) + IDL + LDL cholesterol output, 4.5-fold (106 vs. 23 ng/g liver/min, P < 0. 005) in SMHL versus NZW rabbits. ApoB output in VLDL1 was 38 ng/g liver per min in SMHL and 14 ng/g liver per min in NZW (NS). In SMHL VLDL(2) + IDL + LDL apoB was increased 9-fold at 53 versus 6 ng/g liver per min in NZW (P < 0.001). We conclude that the SMHL rabbit overproduces apoB-containing lipoproteins particularly in the VLDL(2) + IDL + LDL fraction, a characteristic consistent with its use as a model of FCH.  相似文献   

19.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production.  相似文献   

20.
The effects of continuously administering both conjugated equine estrogens (CEE) and micronized progesterone (MP) on the concentration, composition, production and catabolism of very low density (VLDL) and low density lipoproteins (LDL) have not previously been reported. The mechanism of the hormonally induced reductions of plasma LDL cholesterol of S(f) 0;-20 (mean 16%, P < 0.005) and LDL apoB (mean 6%, P < 0.025) were investigated by studying the kinetics of VLDL and LDL apolipoprotein (apo) B turnover after injecting autologous (131)I-labeled VLDL and (125)I-labeled LDL into each of the 6 moderately hypercholesterolemic postmenopausal subjects under control conditions and again in the fourth week of a 7-week course of therapy (0.625 mg/d of CEE + 200 mg/d of MP). The combined hormones significantly lowered plasma LDL apoB by increasing the mean fractional catabolic rate of LDL apoB by 20% (0. 32 vs. 0.27 pools/d, P < 0.03). Treatment also induced a significant increase in IDL production (6.3 vs. 3.7 mg/kg/d, P = 0.028). However, this did not result in an increase in LDL production because of an increase in IDL apoB direct catabolism (mean 102%, P = 0.033). VLDL kinetic parameters were unchanged and the concentrations of plasma total triglycerides (TG), VLDL-TG, VLDL-apoB did not rise as often seen with estrogen alone. Plasma HDL-cholesterol rose significantly (P < 0.02). Our major conclusion is that increased fractional catabolism of LDL underlies the LDL-lowering effect of the combined hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号