首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The work studies effects of elevated gravitation on activity of locomotor centers in the locust Locusta migratoria L. Under effect of the increased gravity field the excitation of the motor centers that provide activity of the locus wing apparatus was shown to decrease. Analysis of the data obtained has allowed us concluding that the higher CNS centers (subesophageal ganglion) produce at least two types of excitatory (stimulatory) effects on segmental centers, one of the types affecting motor centers in the rest state, the other, in the active state. We believe that it is the impulses of the second type that are inhibited under effect of the increased radial acceleration on the organism. There is every reason to think that an important role in these processes is played by peculiar structures of the supraesophageal ganglion protocerebrum: mushroom bodies and the central complex that regulates activity of the locust segmental centers both directly and indirectly via the subesophageal ganglion.  相似文献   

2.
Effect of static load on activity of motor centers controlling motor activity (walking flight) was studied in the American cockroach Periplaneta americana L. It has been established that under effect of load on the animal body the relative excitability of these centers increases. A suggestion is put forward about the presence of common neuronal elements in the generator networks providing motor acts in the American cockroach; a role of afferent systems in control of excitability of locomotor centers functioning in the regime of static load is shown.  相似文献   

3.
Effect of static load on activity of motor centers controlling motor activity (walking, flight) was studied in the American cockroach Periplaneta americana L. It has been established that under effect of load on the animal body the relative excitability of these centers increases. A suggestion is put forward about the presence of common neuronal elements in the generator networks providing motor acts in the American cockroach; a role of afferent systems in control of excitability of loco-motor centers functioning in the regime of static load is shown.  相似文献   

4.
Two groups of rats with different level of motor activities: high- and low-active animals, were distinguished. The blockade of dopamine receptors by haloperidol led to depression of locomotor activity in both groups of rats; in grape snails, haloperidol caused a decrease of the velocity of locomotor responses. In was found that within 5 minutes of intravenous injection of haloperidol the excitability of spinal centers of rats decreased; but in 30 minutes in started restoring. Chronic application of the preparation depressed the effect of posttetanic potentiation of H-response in gastrocnemius muscle of spinal rats. In command neurons of grape snail, chronic injections of haloperidol causes a significant hyperpolarization shift of membrane potential and an increase of threshold of the generation of action potential. It was shown that the selective pharmacological inhibition of dopaminergic system of the brain led to a decrease of excitability in some determined neurons of the snail and spinal motor centers of rats, as well as inhibited the locomotor responses both in vertebrate and in invertebrate animals.  相似文献   

5.
On freely moving albino rats we demonstrated that, when fast food-procuring movements are performed, the mass electrical activity of the lateral hypothalamus (LH) is suppressed 1.6–2.0 sec before the movement beginning recorded with a photoelectrical device. Videorecording of the movements and recording of the spike activity of LH units showed that the latter are activated 1.0–0.1 sec before the movement initiation. The LH is considered a motivation-related structure, which serves as a source providing an increase in the excitability of the structures involved in the control of food-procuring movements and, further on, supporting this increased excitability. The LH is also a component of the mechanisms providing formation of the motor program. The role of the LH in the ensemble of motor centers, which organize and control voluntary movements, is discussed.  相似文献   

6.
The neural control system for generation of locomotion is an important system for analysis of neural mechanisms underlying complex motor acts. In these studies, a novel experimental model using neonatal rat brain stem and spinal cord in vitro was developed for investigation of the locomotor system in mammals. The in vitro brain stem and spinal cord system was shown to retain functional circuitry for locomotor command generation, motor pattern generation, and sensorimotor integration. This system was exploited to investigate neurochemical mechanisms involved in neurogenesis of locomotion. Evidence was obtained for peptidergic and gamma-amino-butyric acid-mediated mechanisms in brain-stem circuits generating locomotor commands. Cholinergic, dopaminergic, and excitatory amino acid-mediated mechanisms were shown to activate spinal cord circuits for locomotor pattern generation. Endogenous N-methyl-D-aspartic acid receptors in spinal networks were found to play a central role in the generation of locomotion. The chemically induced patterns of motor activity and rhythmic membrane potential oscillations of spinal motoneurons were characteristic of those during locomotion in other mammals in vivo. The in vitro brain stem and spinal cord model provides a versatile and powerful experimental system with potentially broad application for investigation of diverse aspects of the neurobiology of mammalian motor control systems.  相似文献   

7.
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.  相似文献   

8.
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.  相似文献   

9.
 Straight locomotion in the lamprey is, at the segmental level, characterized by alternating bursts of motor activity with equal duration and spike frequency on the left and the right sides of the body. Lateral turns are characterized by three main changes in this pattern: (1) in the turn cycle, the spike frequency, burst duration, and burst proportion (burst duration/cycle duration) increase on the turning side; (2) the cycle duration increases in both the turn cycle and the succeeding cycle; and (3) in the cycle succeeding the turn cycle, the burst duration increases on the non-turning side (rebound). We investigated mechanisms for the generation of turns in single-segment models of the lamprey locomotor spinal network. Activation of crossing inhibitory neurons proved a sufficient mechanism to explain all three changes in the locomotor rhythm during a fictive turn. Increased activation of these cells inhibits the activity of the opposite side during the prolonged burst of the turn cycle, and slows down the locomotor rhythm. Secondly, this activation of the crossing inhibitory neurons is accompanied by an increased calcium influx into the cells. This gives a suppressed activity on the turning side and a contralateral rebound after the turn, through activation of calcium-dependent potassium channels. Received: 28 June 2000 / Accepted for publication: 10 May 2001  相似文献   

10.
The present study examined interaction between dexamethasone (DEX) and morphine on the locomotor activity in groups of mice by using the activity cage test. Morphine administration (30-75-150 mg/kg, ip) induced a dose-related increase of the locomotor activity of mice, whereas DEX per se (0.1-1.0-10 mg/kg, ip) did not modify the activity of control mice. Pretreatment of mice with DEX 0.1 mg did not alter the hyperactivity produced by the three doses of morphine. In contrast, DEX administered at 1.0 mg reduced the morphine effects on locomotor activity, whereas DEX at 10 mg potentiated the morphine hypermotility. Our results suggest that DEX may play an important regulatory role on the central effects of morphine through a differential modulation of brain excitability systems.  相似文献   

11.
Neuromodulators orchestrate complex behavioral routines by their multiple and combined effects on the nervous system. In the desert locust, Schistocerca gregaria, frontal ganglion neurons innervate foregut dilator muscles and play a key role in the control of foregut motor patterns. To further investigate the role of the frontal ganglion in locust behavior, we currently focus on the frontal ganglion central pattern generator as a target for neuromodulation. Application of octopamine, a well-studied insect neuromodulator, generated reversible disruption of frontal ganglion rhythmic activity. The threshold for the modulatory effects of octopamine was 10–6 mol l–1, and 10–4 mol l–1 always abolished the ongoing rhythm. In contrast to this straightforward modulation, allatostatin, previously reported to be a myoinhibitor of insect gut muscles, showed complex, tri-modal, dose-dependent effects on frontal ganglion rhythmic pattern. Using a novel cross-correlation analysis technique, we show that different allatostatin concentrations have very different effects not only on cycle period but also on temporal characteristics of the rhythmic bursts of action potentials. Allatostatin also altered the frontal ganglion rhythm in vivo. The analysis technique we introduce may be instrumental in the study of not fully characterized neural circuits and their modulation. The physiological significance of our results and the role of the modulators in locust behavior are discussed.Abbreviation CPG central pattern generator - FG frontal ganglion - JH juvenile hormone - STNS stomatogastric nervous system  相似文献   

12.
Primary afferent depolarization of C fibres in the spinal cord of the cat   总被引:1,自引:0,他引:1  
The excitability of primary afferent terminals of cutaneous C fibres was tested in the spinal cord of decerebrated cats. C fibre terminal excitability was decreased in the spinal state, and increased by conditioning volleys that activated only A fibres of another cutaneous nerve and by stimulating hair mechanically. It is suggested that C fibre input and therefore nociceptive information to the central nervous system is susceptible to presynaptic control by segmental and suprasegmental mechanisms.  相似文献   

13.
Concousions Analysis of the problem of the organization and mechanisms of the functioning of the system of suprasegmental control of cyclical movements can be recapitulated in the following manner. The systems of control of the cyclical movements (of the locomotion and scratching type) are adaptive control systems in which there are adaptive mechanisms (regulators) of both the spinal and supraspinal levels. The spinocerebellar loop presents as an important component of the supraspinal regulators. The cerebellum apparently plays the role of an adaptive filter in the adaptational mechanism of the supraspinal level, a filter which accomplishes the spatial-temporal filtration of information arriving along its various afferent inputs. That phase and amplitude modulation of the effectiveness of the influence of the corresponding descending systems on the spinal centers of rhythmic movements is accomplished on this basis, modulation which in the final analysis ensures the achievement of a stable state of the limited interaction of the centers with the supraspinal systems. The systems of control of the locomotor and scratching movements differ above all in the quality (degree) of their adaptedness. A higher degree of adaptedness of the system of control is characteristic for the locomotor movements than for the scratching movements.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 736–755, November–December, 1992.  相似文献   

14.
Research was performed on spinal cats injected with DOPA and decorticate (decerebrated at level A 13) and spinal cats. It was found that formation (activation) of the spinal locomotor generator is accompanied by heightened excitability in the extensor and the reverse trend in the flexor motoneurons, by an increase in the efficacy of recurrent and reciprocal Ia inhibition of -motoneurons, and by a weakening of the influence of Ib afferents and extensor reflex afferents on these same motoneurons. The likely functional role of these changes in tuning of the spinal segmental apparatus in the generation of locomotor rhythm is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 679–687, September–October, 1986.  相似文献   

15.
Summary In the locust,Locusta migratoria, the pairs of connectives between the three thoracic ganglia and in the neck were transected in all possible combinations. Each of these preparations was tested for the production of rhythmic flight motor activity, with sensory input from the wing receptors intact and after deafferentation. The motor activity elicited in these preparations was characterized by intracellular recordings from motoneurons and electromyographic analyses.The motor patterns observed in locusts with either the neck or the pro-mesothoracic connectives severed (Figs. 2, 3, and 4) were very similar to the flight motor pattern produced by animals with intact connectives. The activity recorded in mesothoracic flight motoneurons of locusts with either only the meso-metathoracic connectives cut or both the meso-metathoracic and the neck connectives transected were similar to each other. Rhythmic motor activity could be observed in these preparations only as long as sensory feedback from the wing receptors was intact. These patterns were significantly different from the intact motor pattern (Figs. 5, 6, and 7). Similar results were obtained when the mesothoracic ganglion was isolated from the other two thoracic ganglia, although the oscillations produced under these conditions were weak (Fig. 8 upper). In the isolated metathorax no rhythmic flight motor activity could be recorded (Fig. 8 lower), even when wing afferents were intact.Considering the differences between the motor patterns observed in the various preparations these results suggest that the ganglia of the locust ventral nerve cord do not contain segmental, homologous flight oscillators which are coupled to produce the intact flight rhythm. Instead they support the idea that the functional flight oscillator network is distributed throughout the thoracic ganglia (Robertson and Pearson 1984). The results also provide further evidence that sensory feedback from the wing sense organs is necessary for establishing the correct motor pattern in the intact animal (Wendler 1974, 1983; Pearson 1985; Wolf and Pearson 1987 a).Abbreviations CPG central pattern generator - EMG electromyogram  相似文献   

16.
Abstract. The effects of intrinsic and extrinsic factors on locomotor activity in crowd‐reared first‐stadium nymphs of the migratory locust Locusta migratoria are investigated under continuous light conditions using an actograph apparatus. Nymphs show monomodal or bimodal patterns of locomotor activity with respect to the time after the start of measurements, depending on the age. Locomotor activity is suppressed by the presence of grass in nymphs aged 0–2 days old but a peak of activity observed shortly after hatching is not suppressed. The results suggest that newly‐hatched nymphs may try to disperse from the hatching site. Nymphs show higher locomotor activity levels under moist conditions than under dry conditions during the first 5‐h period of measurements. This enhanced locomotor activity may constitute attempts to avoid high humidity. Under dim‐light conditions (2 × 10?2 Wm?2), locomotor activity is suppressed during the first half day and increases to a high level thereafter in both grass‐fed and unfed individuals. This increased activity might indicate a possible involvement of circadian rhythms. Background colour has no significant effect on the locomotor activity. The present study provides new aspects of behaviour in nymphs as well as baseline data for behavioural analysis of locust locomotion in relation to phase polyphenism.  相似文献   

17.
A hypothetical structural and functional scheme of organization of the immature spinal motor center is proposed, based on our own studies carried out on rat pups of the first month of postnatal development as well as on the analysis of data from literature. Taking into account peculiarities of functioning of various chains of the segmental reflex apparatus (high excitability of the motor center, heterochrony in the development of interneurons of the spinal cord dorsal horns as well as of excitatory and inhibitory mechanisms, possibility of generation of rhythmic activity by one of the half-centers of the motor generator regardless of the activity of the other one) and the mechanisms of its cholinergic and catecholaminergic regulation, age-related changes are considered, which are connected with the organization of interrelations of elements both within the motor center and from the descending regulatory systems.  相似文献   

18.
It is generally believed that neural transmission in the central nervous systems of insects is cholinergic, on the basis of secondary evidence: the presence of cholinesterase, and sensitivity of a nonsynaptic region of the neuron, its cell body, to iontophoresed acetylcholine. In the present work a preparation has been developed which takes advantage of the availability of identified motor neurons in the locust metathoracic ganglion with known 3-dimensional geometry of dendritic fields. These neurons transmit at their peripheral neuromuscular junctions with glutamate. The fast extensor tibiae motor neuron also makes excitatory central connections onto its functional antagonists the flexor tibiae motor neurons. Unless Dale's principle is contravened, transmission at these central synapses should also be glutamatergic. This transmission onto flexor motor neurons was found to be attenuated 70% by a glutamatergic blocker. Glutamate iontophoresed into selected areas of neuropil into which the motor neurons have dendritic branches caused the neurons to be depolarized, in a dose-dependent manner. Individual motor neurons were directly excited to spike with suprathreshold iontophoretic current. With long durations of release they were desensitized, but recovered quickly with rest. The data provide evidence that central transmission onto motor neurons in the locust metathoracic ganglion is glutamatergic.  相似文献   

19.
Melatonin reduces locomotor activity and circulating cortisol in goldfish   总被引:1,自引:0,他引:1  
The present study focused on the effects of a subchronic melatonin treatment on locomotor activity and cortisol plasma levels in goldfish. We compared two different administration routes: peripheral (10 μg/g body weight) versus central (1 μg/μl) injections of melatonin for 7 or 4 days, respectively. Daily locomotor activity, including both diurnal and nocturnal activities, food anticipatory activity and circulating cortisol at 11:00 (under 24 h of food deprivation and 17 h postinjection) were significantly reduced after repeated intraperitoneal injections with melatonin for 7 days, but not after intracerebroventricular treatment. Taking in mind the anoretic effect of melatonin in this species, we investigated if such feeding reduction is directly responsible for the reduction in motor activity induced by melatonin treatment. Food restriction (50%) for 10 days did not significantly modify either daily locomotor activity or plasma cortisol levels in goldfish, indicating that the peripheral action of melatonin diminishing locomotor activity in goldfish is not a direct consequence of its anoretic action. In summary, our results indicate that, as previously described in other vertebrate species, melatonin can regulate locomotor activity and cortisol levels in goldfish, suggesting a sedative effect of this hormone in this teleost.  相似文献   

20.
Purpose Vivid motor imagery appears to be associated with improved motor learning efficiency. However, the practical difficulties in measuring vivid motor imagery warrant new analytical approaches. The present study aimed to determine the instruction conditions for which vividness in motor imagery could be more easily seen and the excitability of the sensory cortex as it relates to the motor image. Materials and methods In total, 15 healthy, right-handed volunteers were instructed to imagine grasping a rubber ball under a verbal-only instruction condition (verbal condition), a verbal?+?visual instruction condition (visual condition), and a verbal?+?execution (physically grasping a real ball) condition (execution condition). We analyzed motor imagery-related changes in somatosensory cortical excitability by comparing somatosensory-evoked potentials in each condition with the rest (control) condition. We also used a visual analogue scale to measure subject-reported vividness of imagery. Results We found the N33 component was significantly lower in the execution condition than in the rest condition (p?Conclusions These data suggest that experiencing a movement through actual motor execution immediately prior to performing mental imagery of that movement enhances the excitability of motor-related cortical areas. It is suggested that the excitability of the motor-related region increased as a result of the motor imagery in the execution condition acting on the corresponding somatosensory cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号