首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Total lipid extracts from potato tubers and tobacco leaves are separated into lipid classes by two step HPLC using a silicic column. Elution is first performed for 20 min with a programmed linear gradient of two mixed solvents running from 100% of solution A (isopropanol-hexane, 4:3) to 100% of solution B (isopropanol-hexane-water, 8:6:1.5); the column is then eluted with pure solution B in an isocratic mode for 20 min more. The main polar lipids (MGDG, DGDG, PC, PE, PG) from both plant tissues can be collected and further separated into component molecular species on a simplified HPLC system with a C18 column eluted in an isocratic mode with a polar solvent. Molecular species separations are achieved within 35 min; quantifications are made through GLC analysis of attached fatty acids. Three to five main molecular species are thus clearly identified in each lipid class. In potato tuber, phospholipids (PC, PE) 18:2/18:2 species are predominant. In tobacco leaf, six double bond species (18:3/18:3 and 16:3/18:3) are predominant in galactolipids, whereas PC contains a greater number of molecular species varying by their degree of unsaturation (from 18:3/18:3 to 16:0/18:2). Only certain molecular species of PG contain Δ3-trans-hexadecenoic acid.  相似文献   

2.
The interactions of CF0-CF1 with different lipids were studied by following the stimulation of Mg-ATPase and of Pi-ATP exchange activities of reconstituted CF0-CF1 proteoliposomes. The following results were obtained: (1) Both Pi-ATP exchange and Mg-ATPase activities are stimulated by lipids. Furthermore, the inhibition of Mg-ATPase by N,N′-dicyclohexylcarbodiimide is dependent on the interactions of CF0-CF1 with lipids. (2) A polar lipid extract of thylakoid membranes stimulates Mg-ATPase activity of CF0-CF1 more efficiently than phospholipids. The relative effectiveness of Mg-ATPase stimulation is: chloroplast lipids > soybean phospholipids > phosphatidylcholine/phosphatidylserine (4: 1) > phosphatidylcholine. The rate of Pi-ATP exchange in chloroplast lipids CF0-CF1 proteoliposomes is, however, lower than in soybean lipids CF0-CF1 proteoliposomes, due to their higher permeability to protons. Addition of 10% phosphatidylserine to chloroplast lipids reduces their permeability to protons and stimulates Pi-ATP exchange. (3) The kinetic mechanism of ATPase stimulation by chloroplast lipids is by decreasing the Km (ATP) and by increasing Vmax in comparison to soybean lipid proteoliposomes. This may explain the low affinity for ATP and the slow turnover rate of the purified enzyme in artificial lipids in comparison to the native enzyme in chloroplast thylakoids. (4) Chloroplast lipids lacking monogalactosyldiacylglycerols only poorly activate CF0-CF1. A large stimulation of Pi-ATP exchange is obtained by a mixture of 60% monogalactosyldiacylglycerol and 40% of the rest of the chloroplast lipids, but not by mixtures of monogalactosyldiacylglycerol with phospholipids. Hydrogenation of the unsaturated fatty acids of monogalactosyldiacylglycerol inhibits the activation of CF0-CF1. (5) The results suggest that: (a) interactions of specific chloroplast lipids with CF0-CF1 activates the enzyme by increasing its turnover and its affinity for ATP; (b) specific requirements for CF0-CF1 activation are the presence of monogalactosyldiacylglycerols together with another chloroplast lipid component and of highly unsaturated fatty acids.  相似文献   

3.
The thermal stability of excitation transfer from pigment proteins to the Photosystem II reaction center of Nerium oleander adjusts by 10 Celsius degrees when cloned plants grown at 20°C/15°C, day/night growth temperatures are shifted to 45°C/32°C growth temperature or vice versa. Concomitant with this adjustment is a decrease in the fluidity of thylakoid membrane polar lipids as determined by spin labeling. The results are consistent with the hypothesis that there is a limiting maximum fluidity compatible with maintenance of native membrane structure and function. This limiting fluidity was about the same as for a number of other species which exhibit a range of thermal stabilities. Inversely correlated shifts in lipid fluidity and thermal stability occurred during the time course of acclimation of N. oleander to new growth temperatures. Thus, the temperature at which the limiting fluidity was reached changed during acclimation while the limiting fluidity remained constant. Although the relative proportion of the major classes of membrane polar lipids remained constant during adjustments in fluidity, large changes occured in the abundance of specific fatty acids. These changes were different for the phospho- and galacto-lipids suggesting that the fatty acid composition of these two lipid classes is regulated by different mechanisms. Comparisons between membrane lipid fluidity and fatty acid composition indicate that fluidity is not a simple linear function of fatty acid composition.  相似文献   

4.
A medium chain length fatty acid, [1-(14C)] lauric acid (12:0) was administered to the detached leaves of Artemisia and was incorporated into major lipids, including phospholipids and galactolipids. [1-(14C)]12:0 was elongated and desaturated into linolenic acid (18:3). In detached leaves of both Artemisia and Arabidopsis thaliana ecotype Columbia, radioactivity from [14C]18:3 was incorporated into jasmonic acid (JA) and methyl jasmonate (MJ). Higher amounts of [14C]JA were measured in Artemisia than Arabidopsis leaves. In Artemisia, [14C]JA was actively metabolized into [14C]MJ. Extracts prepared from the leaves of Artemisia, exhibited higher in vitro JA methyltransferase activity than those from Arabidopsis.  相似文献   

5.
Nakamura Y  Ohta H 《FEBS letters》2007,581(28):5475-5479
The origin of diacylglycerol, a substrate for membrane lipid biosynthesis, is not fully understood. Here, we report that Petunia hybrida floral organs contain large amounts of diacylglycerol. Our data suggest that in stamens and pistils diacylglycerol is supplied both from phosphatidylcholine by non-specific phospholipase C activity and de novo via the Kennedy pathway and phosphatidic acid phosphatase, whereas in petals the two-step pathway catalyzed by phospholipase D and phosphatidic acid phosphatase predominates. Therefore, the pathways that supply diacylglycerol differ among floral reproductive organs, although large amounts of diacylglycerol are commonly accumulated in these organs.  相似文献   

6.
Comparative lipid analysis demonstrated reduced amount of PG (50%) and lower ratio of MGDG/DGDG in iron-stressed Synechococcus sp. PCC 7942 cells compared to cells grown under iron sufficient conditions. In parallel, the monoenoic (C:1) fatty acids in MGDG, DGDG and PG increased from 46.8%, 43.7% and 45.6%, respectively in control cells to 51.6%, 48.8% and 48.7%, respectively in iron-stressed cells. This suggests increased membrane dynamics, which may facilitate the diffusion of PQ and keep the PQ pool in relatively more oxidized state in iron-stressed compared to control cells. This was confirmed by chlorophyll fluorescence and thermoluminescence measurements. Analysis of carotenoid composition demonstrated that the induction of isiA (CP43′) protein in response to iron stress is accompanied by significant increase of the relative abundance of all carotenoids. The quantity of carotenoids calculated on a Chl basis increased differentially with nostoxanthin, cryptoxanthin, zeaxanthin and β-carotene showing 2.6-, 3.1-, 1.9- and 1.9-fold increases, respectively, while the relative amount of caloxanthin was increased only by 30%. HPLC analyses of the pigment composition of Chl-protein complexes separated by non-denaturating SDS-PAGE demonstrated even higher relative carotenoids content, especially of cryptoxanthin, in trimer and monomer PSI Chl-protein complexes co-migrating with CP43′ from iron-stressed cells than in PSI complexes from control cells where CP43′ is not present. This implies a carotenoid-binding role for the CP43′ protein which supports our previous suggestion for effective energy quenching and photoprotective role of CP43′ protein in cyanobacteria under iron stress.  相似文献   

7.
A comparison of the chemical composition and physical states of chloroplast lipids, of atrazine-resistant (R) and sensitive (S) biotypes of Conyza canadensis L. (horseweed), in the rosetta stage showed: (1) the R biotype contains lower amounts of polar lipids in its thylakoids, as expressed on a chlorophyll basis, than the S biotype. (2) The chloroplasts of the R biotype have higher contents of monogalactosyl diacylglycerol (MGDG) and lower contents of digalactosyl diacylglycerol (DGDG) and phosphatidylglycerol (PG), than those of the S biotype. (3) The chloroplast total lipids exhibit a higher degree of unsaturation in the R biotype. This is due to a higher level of linolenic acid, and a lower level of palmitic acid in the glycolipids. The fatty acid compositions of the phospholipids, except that of PG, do not differ significantly. (4) The lipid matrix of the thylakoid membranes of the R biotype is more fluid than that of the S biotype, as measured by the fluorescence polarization technique. The results are discussed in terms of whether these differences are responsible for the herbicide resistance.  相似文献   

8.
We generated Synechocystis sp. PCC 6803 strains, designated F-His and J-His, which express histidine-tagged PsaF and PsaJ subunits, respectively, for simple purification of the photosystem I (PSI) complex. Six histidine residues were genetically added to the C-terminus of the PsaF subunit in F-His cells and the N-terminus of the PsaJ subunit in J-His cells. The histidine residues introduced had no apparent effect on photoautotrophic growth of the cells or the activity of PSI and PSII in thylakoid membranes. PSI complexes could be simply purified from the F-His and J-His cells by Ni2+-affinity column chromatography. When thylakoid membranes corresponding to 20 mg chlorophyll were used, PSI complexes corresponding to about 7 mg chlorophyll could be purified in both strains. The purified PSI complexes could be separated into monomers and trimers by ultracentrifugation in glycerol density gradient and high activity was recorded for trimers isolated from the F-His and J-His strains. Blue-Native PAGE and SDS-PAGE analysis of monomers and trimers indicated the existence of two distinct monomers with different subunit compositions and no contamination of PSI with other complexes, such as PSII and Cyt b6f. Further analysis of proteins and lipids in the purified PSI indicated the presence of novel proteins in the monomers and about six lipid molecules per monomer unit in the trimers. These results demonstrate that active PSI complexes can be simply purified from the constructed strains and the strains are very useful tools for analysis of PSI.  相似文献   

9.
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.  相似文献   

10.
11.
The membrane lipid composition of living cells generally adjusts to the prevailing environmental and physiological conditions. In this study, membrane activity and lipid composition of the Gram-negative bacterium Vibrio sp. DSM14379, grown aerobically in a peptone-yeast extract medium supplemented with 0.5, 1.76, 3, 5 or 10% (w/v) NaCl, was determined. The ability of the membrane to reduce a spin label was studied by EPR spectroscopy under different salt concentrations in cell suspensions labeled with TEMPON. For lipid composition studies, cells were harvested in a late exponential phase and lipids were extracted with chloroform-methanol-water, 1:2:0.8 (v/v). The lipid polar head group and acyl chain compositions were determined by thin-layer and gas-liquid chromatographies. 31P-NMR spectroscopy was used to study the phase behaviour of the cell lipid extracts with 20 wt.% water contents in a temperature range from −10 to 50 °C. The results indicate that the ability of the membrane to reduce the spin label was highest at optimal salt concentrations. The composition of both polar head groups and acyl chains changed markedly with increasing salinity. The fractions of 16:0, 16:1 and 18:0 acyl chains increased while the fraction of 18:1 acyl chains decreased with increasing salinity. The phosphatidylethanolamine fraction correlated inversely with the lysophosphatidylethanolamine fraction, with phosphatidylethanolamine exhibiting a minimum, and lysophosphatidylethanolamine a maximum, at the optimum growth rate. The fraction of lysophosphatidylethanolamine was surprisingly high in the lipid extracts. This lipid can form normal micellar and hexagonal phases and it was found that all lipid extracts form a mixture of lamellar and normal isotropic liquid crystalline phases. This is an anomalous behaviour since the nonlamellar phases formed by total lipid extracts are generally of the reversed type.  相似文献   

12.
The freshwater green microalga Parietochloris incisa is the richest known plant source of the polyunsaturated fatty acid (PUFA), arachidonic acid (20:4omega6, AA). While many microalgae accumulate triacylglycerols (TAG) in the stationary phase or under certain stress conditions, these TAG are generally made of saturated and monounsaturated fatty acids. In contrast, most cellular AA of P. incisa resides in TAG. Using various inhibitors, we have attempted to find out if the induction of the biosynthesis of AA and the accumulation of TAG are codependent. Salicylhydroxamic acid (SHAM) affected a growth reduction that was accompanied with an increase in the content of TAG from 3.0 to 6.2% of dry weight. The proportion of 18:1 increased sharply in all lipids while that of 18:2 and its down stream products, 18:3omega6, 20:3omega6 and AA, decreased, indicating an inhibition of the Delta12 desaturation of 18:1. Treatment with the herbicide SAN 9785 significantly reduced the proportion of TAG. However, the proportion of AA in TAG, as well as in the polar lipids, increased. These findings indicate that while there is a preference for AA as a building block of TAG, the latter can be produced using other fatty acids, when the production of AA is inhibited. On the other hand, inhibiting TAG construction did not affect the production of AA. In order to elucidate the possible role of AA in TAG we have labeled exponential cultures of P. incisa kept at 25 degrees C with [1-14C]arachidonic acid and cultivated the cultures for another 12 h at 25, 12 or 4 degrees C. At the lower temperatures, labeled AA was transferred from TAG to polar lipids, indicating that TAG of P. incisa may have a role as a depot of AA that can be incorporated into the membranes, enabling the organism to quickly respond to low temperature-induced stress.  相似文献   

13.
We compared the thylakoid membrane composition and photosynthetic properties of non- and cold-acclimated leaves from the dgd1 mutant (lacking >90% of digalactosyl-diacylglycerol; DGDG) and wild type (WT) Arabidopsis thaliana. In contrast to warm grown plants, cold-acclimated dgd1 leaves recovered pigment-protein pools and photosynthetic function equivalent to WT. Surprisingly, this recovery was not correlated with an increase in DGDG. When returned to warm temperatures the severe dgd1 mutant phenotype reappeared. We conclude that the relative recovery of photosynthetic activity at 5 degrees C resulted from a temperature/lipid interaction enabling the stable assembly of PSI complexes in the thylakoid.  相似文献   

14.
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号