首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The seasonal changes of photosynthesis of cones of Japanese larch (Larix kaempferi Carr.) trees showed that gross photosynthetic rate of young cones (P G) was 2–3 μmol m−2 s−1 at surface area unit and P G/R D (dark respiration of cones) peaked about 0.7 in the same period, indicating that 70 % of respiratory CO2 was re-fixed. With maturation, P G and P G/R D sharply decreased. Chlorophyll content in cones was 3–20 % of that in leaves, which made it a limiting factor for photosynthesis and its content was closely correlated with photosynthetic capacity. Although sunken and linearly arranged stomatal organs were found on the scale of young cones, differently from the significant regulation of leaf photosynthesis, these stomata tended to be non-functional since CO2 is not limiting factor for cone photosynthesis. Thus photosynthesis of larch cones is an additional contribution to their development.  相似文献   

3.
We conducted a detail study of the photosynthetic apparatus in assimilating organs of three introduced evergreen conifer species: Taxus cuspidate S. et Z. ex E. (Far-Eastern yew), Thuja occidentalis L. (arbovitae “green”), and Th. occidentalis f. “Reingold” (arbovitae “yellow”) at various times in their life cycle. We studied the potential photosynthesis rate; composition and ratios of pigments, including primary carotenoids; the violaxanthin cycle (VC) activity, the synthesis of a secondary carotenoid, rhodoxanthin; and chloroplast ultrastructure. In winter and spring, β-carotene and lutein (primary carotenoids) contents were relatively constant in yew and arbovitae “yellow”. In December, the VC in yew was balanced and in arbovitae “yellow” unbalanced. In arbovitae “yellow”, the zeaxanthin pool was heterogeneous, and only part of it took part in the VC. It can be assumed that the other part of the pool can be oxidized to form a secondary carotenoid, rhodoxanthin. This secondary carotenoid was also accumulated in arbovitae “green”; its synthesis took place during the season, when the photosynthesis rate of plants was the lowest, and a significant chloroplast reorganization occurred (the number of thylakoids in grana decreased and plastoglobules appeared). We suppose that rhodoxanthin forms a filter for the light under the conditions of high insolation in winter. Thus, the evergreen conifer plants studied, which are adapted to growing at high latitudes where temperature is low and insolation is high in winter and spring, have a system for protecting the photosynthetic apparatus against photodestruction. In the basis of this system, the primary and secondary carotenoids lie, whose content changes during the year.  相似文献   

4.
Growth light intensities largely determine photosynthesis, biomass, and grain yield of cereal crops. To explore the genetic basis of light responses of biomass and Researchphotosynthetic parameters in wheat(Triticum aestivum L.),a quantitative trait locus(QTL) analysis was carried out in a doubled haploid(DH) population grown in low light(LL),medium light(ML), and high light(HL), respectively. The results showed that the wheat seedlings grown in HL produced more biomass with lower total chlorophyll content(Chl), carotenoid content, and maximum photochemical efficiency of photosystem II(Fv/Fm) while the wheat seedlings grown in LL produced less biomass with higher Chl compared with those grown in ML. In total, 48 QTLs were identified to be associated with the investigated parameters in relation to growth light intensities. These QTLs were mapped to 15 chromosomes which individually explained6.3%–36.0% of the phenotypic variance, of which chromo-somes 3A, 1D, and 6B were specifically involved in LL response, 5D and 7A specifically involved in ML response,and 4B specifically involved in HL response. Several light-responsive QTLs were co-located with QTLs for photosynthetic parameters, biomass, and grain weight under various conditions which may provide new hints to uncover the genetic control of photosynthesis, biomass, and grain weight.  相似文献   

5.
The effects of extreme phosphate (Pi) deficiency during growth on the contents of adenylates and pyridine nucleotides and the in vivo photochemical activity of photosystem II (PSII) were determined in leaves of Helianthus annuus and Zea mays grown under controlled environmental conditions. Phosphate deficiency decreased the amounts of ATP and ADP per unit leaf area and the adenylate energy charge of leaves. The amounts of oxidized pyridine nucleotides per unit leaf area decreased with Pi deficiency, but not those of reduced pyridine nucleotides. This resulted in an increase in the ratio of reduced to oxidized pyridine nucleotides in Pi-deficient leaves. Analysis of chlorophyll a fluorescence at room temperature showed that Pi deficiency decreased the efficiency of excitation capture by open PSII reaction centres (φe), the in vivo quantum yield of PSII photochemistry (φPSII) and the photochemical quenching co-efficient (qP), and increased the non-photochemical quenching co-efficient (qN) indicating possible photoinhibitory damage to PSII. Supplying Pi to Pi-deficient sunflower leaves reversed the long-term effects of Pi-deficiency on PSII photochemistry. Feeding Pi-sufficient sunflower leaves with mannose or FCCP rapidly produced effects on chlorophyll a fluorescence similar to long-term Pi-deficiency. Our results suggest a direct role of Pi and photophosphorylation on PSII photochemistry in both long-and short-term responses of photosynthetic machinery to Pi deficiency. The relationship between φPSII and the apparent quantum yield of CO2 assimilation determined at varying light intensity and 21 kPa O2 and 35 Pa CO2 partial pressures in the ambient air was linear in Pi-sufficient and Pi-deficient leaves of sunflower and maize. Calculations show that there was relatively more PSII activity per mole of CO2 assimilated by the Pi-deficient leaves. This indicates that in these leaves a greater proportion of photosynthetic electrons transported across PSII was used for processes other than CO2 reduction. Therefore, we conclude that in vivo photosynthetic electron transport through PSII did not limit photosynthesis in Pi-deficient leaves of sunflower and maize and that the decreased CO2 assimilation was a consequence of a smaller ATP content and lower energy charge which restricted production of ribulose, 1-5, bisphosphate, the acceptor for CO2.  相似文献   

6.
A canopy photosynthesis model was modified to assess the effect of photoinhibition on whole‐plant carbon gain. Photoinhibitory changes in maximum quantum yield of photosystem II (Fv/Fm) could be explained solely from a parameter (Lflux) calculated from the light micro‐environment of the leaves. This relationship between Fv/Fm and the intercepted cumulative light dose, integrated and equally weighted over several hours was incorporated into the model. The effect of photoinhibition on net photosynthesis was described through relationships between photoinhibition and the shaping parameters of the photosynthetic light‐response curve (quantum use efficiency, convexity, and maximum capacity). This new aspect of the model was then validated by comparing measured field data (diurnal courses of Fv/Fm) with simulation results. Sensitivity analyses revealed that the extent of photoinhibitory reduction of whole‐plant photosynthesis was strongly dependent on the structural parameters (LAI and leaf angle). Simulations for a Mediterranean evergreen oak, Quercus coccifera, under climatic conditions which cause mild photoinhibition revealed a daily loss of 7·5–8·5% of potential carbon gain in the upper sunlit canopy layers, a 3% loss in the bottom canopy, and an overall loss of 6·1%. Thus, this canopy photoinhibition model (CANO‐PI) allows the quantitative evaluation of photoinhibition effects on primary production.  相似文献   

7.
低温胁迫对不同基因型小麦品种光合性能的影响   总被引:3,自引:0,他引:3  
选用不同基因型小麦品种(春性品种扬麦18、弱春性品种郑麦9023、半冬性品种烟农19),研究了分蘖期和拔节期低温对叶片光合和叶绿素荧光特性的影响.结果表明:分蘖期-10℃低温处理后,烟农19的净光合速率(Pn)、气孔导度(gs)、PSⅡ最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、非光化学猝灭系数(NPQ)和PSⅡ非循环光合电子传递速率(ETR)显著高于扬麦18和郑麦9023;郑麦9023的gs、Fv/Fm、qp和NPQ显著高于扬麦18,胞间CO2浓度(Ci)显著高于烟农19;扬麦18的Ci显著高于烟农19,初始荧光(Fo)显著高于郑麦9023和烟农19.拔节期0℃低温处理后,烟农19的Pn、gs、Fv/Fm和qP显著高于扬麦18和郑麦9023,NPQ和ETR显著高于扬麦18;郑麦9023的Pn、gs、Fv/Fm和qP显著高于扬麦18,Fo显著高于烟农19;扬麦18的Ci和Fo显著高于郑麦9023和烟农19.分蘖期和拔节期低温胁迫下,半冬性品种烟农19具有较高的光合活性和较强的自我保护机制,弱春性品种郑麦9023次之,春性品种扬麦18最低.  相似文献   

8.
This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (g(m)) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and g(m) was curvilinear. Leaf temperature also affected to g(m) with an optimum temperature at 29 degrees C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic capacity of olive leaves. This work highlights the need for models of plant growth and ecosystem function to incorporate new parameters affecting the distribution of photosynthetic capacity in canopies.  相似文献   

9.
With average global temperatures predicted to increase over the next century, it is important to understand the extent and mechanisms of C4 photosynthetic acclimation to modest increases in growth temperature. To this end, we compared the photosynthetic responses of two C4 grasses (Panicum coloratum and Cenchrus ciliaris) and one C4 dicot (Flaveria bidentis) to growth at moderate (25/20 degrees C, day/night) or high (35/30 degrees C, day/night) temperatures. In all three C4 species, CO2 assimilation rates (A) underwent significant thermal acclimation, such that when compared at growth temperatures, A increased less than what would be expected given the strong response of A to short-term changes in leaf temperature. Thermal photosynthetic acclimation was further manifested by an increase in the temperature optima of A, and a decrease in leaf nitrogen content and leaf mass per area in the high- relative to the moderate-temperature-grown plants. Reduced photosynthetic capacity at the higher growth temperature was underpinned by selective changes in photosynthetic components. Plants grown at the higher temperature had lower amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase and cytochrome f and activity of carbonic anhydrase. The activities of photosystem II (PSII) and phosphoenolpyruvate carboxylase were not affected by growth temperature. Chlorophyll fluorescence measurements of F. bidentis showed a corresponding decrease in the quantum yield of PSII (phi(PSII)) and an increase in non-photochemical quenching (phi(NPQ)). It is concluded that through these biochemical changes, C4 plants maintain the balance between the various photosynthetic components at each growth temperature, despite the differing temperature dependence of each process. As such, at higher temperatures photosynthetic nitrogen use efficiency increases more than A. Our results suggest C4 plants will show only modest changes in photosynthetic rates in response to changes in growth temperature, such as those expected within or between seasons, or the warming anticipated as a result of global climate change.  相似文献   

10.
低温胁迫下丛枝菌根真菌对玉米光合特性的影响   总被引:8,自引:2,他引:8  
利用盆栽试验,在15 ℃和5 ℃低温胁迫下研究了丛枝菌根(AM)真菌对玉米生长、叶绿素含量、叶绿素荧光和光合作用的影响.结果表明:低温胁迫抑制了AM真菌的侵染;接种AM真菌的玉米地上部和地下部干物质量、相对叶绿素含量高于不接种植株.与非菌根玉米相比,菌根玉米具有较高的最大荧光(Fm)、可变荧光(Fv)、最大光化学效率(Fv/Fm)和潜在光化学效率(Fv/Fo)及较低的初始荧光(Fo),并且在5 ℃处理中差异显著.接种AM真菌使玉米叶片的净光合速率(Pn)和蒸腾速率(Tr)显著增强;低温胁迫下,菌根植株的气孔导度(Gs)显著高于非菌根植株;而胞间CO2浓度(Ci)显著低于非菌根植株.表明AM真菌可通过提高叶绿素含量及改善叶片叶绿素荧光和光合作用来减轻低温胁迫对玉米植株造成的伤害,提高玉米耐受低温的能力,进而提高玉米的生物量,促进玉米生长.  相似文献   

11.
This investigation was performed to study the influence of benomyl on photosynthetic pigments and enzymes in soybean leaves. Chlorophyll and pheophytin levels were reduced by benomyl 45 days after greening. These results indicate that chlorophylla andb, and pheophytin must be controlled by benomyl. SDS-PAGE analysis showed that 50 and 14.5 kD polypeptides represented as the large and small subunits of rubisco. In the both of these subunits, the band intensity of the control was significantly higher than that after benomyl treatment, indicating that these two subunits are affected by benomyl. Benomyl strongly inhibited both the activity and content of rubisco as its concentration was gradually increased. However, it remains unclear whether this reduction of rubisco level was due to a reduced level of rubisco activase. Two major polypeptides of 46 and 42 kD were identified as rubisco activase subunits by SDS-PAGE. The intensity of these two bands was shown to be higher in the control than after benomyl treatment. These results indicate that the rubisco decrease resulting from increased benomyl concentrations was caused by rubisco activase. A significant decrease in both the activity and content of rubisco activase by benomyl was also observed. These results suggest that the decrease in rubisco level caused by benomyl is accompanied by a decrease in both the activity and content of rubisco activase.  相似文献   

12.
高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响   总被引:2,自引:0,他引:2  
在5个温度梯度处理下,研究高温胁迫对4种新疆榛光合参数和叶绿素荧光特性的影响.结果表明:随着温度从25℃持续升高至45℃,新疆榛叶片的净光合速率、气孔导度、胞间CO2浓度、水分利用效率和光能利用效率逐渐降低,且在35~ 45℃之间降幅最大;光系统Ⅱ的实际光化学效率、电子传递速率和光化学猝灭系数随温度的升高缓慢上升,至35℃后急速下降;蒸腾耗水和热耗散随温度的升高而增大.4种新疆榛品种中,新榛3号的光合作用对高温的耐受力较高,属耐热性品种.  相似文献   

13.
为了探讨喀斯特地区适生种青冈栎幼苗对“干旱-复水”环境的适应机制,以当年生青冈栎实生苗为材料,通过盆栽控水试验,研究了4 种土壤干旱胁迫强度[对照(–0.1 MPa)、轻度干旱(–0.5 MPa))、中度干旱(–0.9 MPa)和重度干旱(–1.5 MPa)]及复水处理对叶片的水分状况、光合、叶绿素荧光和解剖结构参数的影响。结果表明:(1)随干旱胁迫加剧,叶片相对含水率、水势、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)均显著降低,而气孔限制值(Ls)显著增加;轻度胁迫下各光合参数以及轻中度胁迫下瞬时水分利用效率(WUE)均不受显著影响。复水后,各干旱处理叶片水分参数、Pn、Tr、Gs、Ci、WUE均比复水前提高,Ls比复水前降低;轻度胁迫复水后叶片水分和光合参数均优于对照,中度胁迫仅Ls未恢复到对照,重度胁迫复水后叶片水分和光合参数均未恢复。(2)随干旱胁迫加剧,叶片初始荧光(Fo)显著增加,而最大荧光(Fm)、最大光化学量子产量(Fv/Fm)和潜在光化学效率(Fv/Fo)均显著下降,且在轻度胁迫下均与对照显著差异。复水后,各干旱胁迫Fm、Fv/Fm和Fv/Fo比复水前提高,而Fo均略低于复水前,轻度胁迫复水后各叶绿素荧光参数均恢复到或优于对照,中度和重度胁迫复水后Fo未恢复到对照,且重度胁迫复水后Fv /Fm仅为0.75。(3)随干旱胁迫加剧,叶片厚度、上下表皮厚度、气孔密度、主脉导管直径均显著增加,叶片气孔器长度、宽度、开口面积、海绵组织厚度均显著降低,而栅栏组织厚度、栅海比和主脉厚度均表现为中度>轻度>对照>重度。复水后,仅各干旱胁迫处理的气孔开口面积和主脉厚度比复水前显著提高;轻度胁迫复水后叶片结构参数也均恢复到或优于对照,中度胁迫复水后气孔开口面积仍显著低于对照,重度胁迫复水后气孔开口未能恢复打开,主脉厚度也低于对照。因此,青冈栎幼苗有耐旱性和旱后恢复能力,适合作为喀斯特地区的生态恢复树种,但在青冈栎幼苗抚育阶段应免受中度以上干旱胁迫(–0.9 MPa),以利于其旱后恢复生长。  相似文献   

14.
以广西农科院甘蔗研究所自育的7个新材料和2个生产上的主栽品种为研究对象,在甘蔗苗期进行低温胁迫处理,研究了各品种(系)甘蔗形态特征的冷害指数、叶绿素含量及光合特性相关指标的变化及其光合特性相关指标与甘蔗抗寒性间的相关性。结果表明:随着低温胁迫处理时间的延长,冷害指数不断增大,但变化的大小与快慢因品种(系)不同表现不一样。各甘蔗品种(系)叶片叶绿素含量均随时间延长而降低。叶片净光合速率、气孔导度在低温处理与常温处理间具有显著差异。低温胁迫处理显著降低了各甘蔗品种(系)最大光化学效率(Fv/Fm)、PSⅡ实际光能转化效率ΦPSⅡ、光适应下PSⅡ反应中心的最大光能转化效率Fv′/Fm′、光化学猝灭系数qP、电子传递速率ETR,而显著提高了初始荧光Fo、稳态荧光Fs、非光化学猝灭系数qNP。相关性分析表明整个测定时期各指标间相关显著,Fv/Fm、Fv′/Fm′、ΦPSⅡ与冷害指数I之间的相关系数在0.800以上,Fv/Fm、Fv′/Fm′、ΦPSⅡ可以作为甘蔗品种(系)抗寒性鉴定的重要参考指标。  相似文献   

15.
* The hydraulic plumbing of vascular plant leaves varies considerably between major plant groups both in the spatial organization of veins, as well as their anatomical structure. * Five conifers, three ferns and 12 angiosperm trees were selected from tropical and temperate forests to investigate whether the profound differences in foliar morphology of these groups lead to correspondingly profound differences in leaf hydraulic efficiency. * We found that angiosperm leaves spanned a range of leaf hydraulic conductance from 3.9 to 36 mmol m2 s-1 MPa-1, whereas ferns (5.9-11.4 mmol m-2 s-1 MPa-1) and conifers (1.6-9.0 mmol m-2 s-1 MPa-1) were uniformly less conductive to liquid water. Leaf hydraulic conductance (Kleaf) correlated strongly with stomatal conductance indicating an internal leaf-level regulation of liquid and vapour conductances. Photosynthetic capacity also increased with Kleaf, however, it became saturated at values of Kleaf over 20 mmol m-2 s-1 MPa-1. * The data suggest that vessels in the leaves of the angiosperms studied provide them with the flexibility to produce highly conductive leaves with correspondingly high photosynthetic capacities relative to tracheid-bearing species.  相似文献   

16.
Photosynthesis is an important component of upland cotton (Gossypium hirsutum L.) yield, but little has been done to increase the photosynthetic performance within the cotton germplasm pool. Part of this dilemma is due to the multi-component aspect of this process and also to lack of information on genetic variation among such components. The objectives of this research were to identify genetic variability in photosynthetic components for six cotton genotypes previously shown to differ in leaf CO2-exchange rates (CER) and to determine if an afternoon decline in photosynthesis altered genotypic differences in CER. CO2-exchange rates were measured at several internal CO2 levels (Ci) to generate CER vs. Ci curves for each genotype and thereby isolate some of the components of photosynthesis. Ribulose 1,5 bisphosphate carboxylase-oxygenase (Rubisco), hydroxypyruvate reductase, malate dehydrogenase, and catalase activities were assayed on leaves used to generate the CER vs. Ci curves. Ambient CER and chlorophyll (Chl) fluorescence measurements were taken before and after solar noon to test for an afternoon decline in photosynthesis. Dixie King, a low ambient CER genotype, exhibited a greater CO2 compensation point, lower carboxylation efficiency, and reduced Photosystem II (PS II) activity than the other genotypes. The carboxylation efficiency of DES 119 was 13% greater than STV 508 and 29% greater than Dixie King, but not different from the other genotypes in 1994. Pee Dee 3 had greater maximum assimilation rate (A) than all other genotypes except STV 213 in 1993. Although no significant genotype by time of day interaction was detected, CER and Chl fluorescence variable to maximum ratio (Fv/Fm) were reduced 8% and 39%, respectively, in the afternoon as compared to the morning. This study demonstrates genetic variations in many of the components of photosynthesis. However, the narrow range of variation in such components for superior photosynthesizing genotypes explains why difficulties are encountered when breeding for increased photosynthesis.  相似文献   

17.
The effects of drought on chlorophyll fluorescence characteristics of PSII, photosynthetic pigments, thylakoid membrane protein (D1), and proline content in different varieties of mung bean plants were studied. Drought stress inhibits PSII activity and induces alterations in D1 protein. We observed a greater decline in the effective quantum yield of PSII, electron transport rate, and saturating photosynthetically active photon flux density (PPFDsat) under drought stress in var. Anand than var. K-851 and var. RMG 268. This may possibly be due to either downregulation of photosynthesis or photoinhibition process. Withholding irrigation resulted in gradual diminution in total Chl content at Day 4 of stress. HPLC analysis revealed that the quantity of β-carotene in stressed plants was always higher reaching maxima at Day 4. Photoinactivation of PSII in var. Anand includes the loss of the D1 protein, probably from greater photosynthetic damage caused by drought stress than the other two varieties.  相似文献   

18.
以两个蛋白质含量不同的小麦品种豫麦34(高蛋白)和扬麦9号(低蛋白)为材料,研究不同温光条件对小麦灌浆期旗叶光合特性和衰老的影响.结果表明:高温、弱光处理显著降低了小麦旗叶净光合速率(Pn)及叶绿素荧光参数Fv/Fm和ΦPSⅡ,但高温和弱光对小麦旗叶造成伤害的生理机制不同,高温主要降低了叶绿素含量(SPAD值)和Pn,灌浆后期Pn下降幅度达50%;而弱光主要降低了叶绿素荧光参数,抑制了光合系统PSⅡ的活性.高温使小麦旗叶丙二醛(MDA)含量升高,超氧化物歧化酶(SOD)活性和可溶性蛋白质含量下降,加速了植株衰老;而弱光下SOD活性较高,小麦衰老进程较高温缓慢,植株对弱光的耐受性较强.豫麦34对高温、弱光逆境的反应比扬麦9号敏感.  相似文献   

19.
为探讨不同浓度外源褪黑素对小麦幼苗生理及光合荧光特性的影响,该研究以良星99为供试材料,测定不同浓度褪黑素处理下小麦幼苗生长形态、光合及荧光参数以及抗氧化酶活性等关键指标。结果表明:(1)0.1μmol·L-1的褪黑素处理显著提高了小麦植株的光合能力,叶绿素Chl a、Chl b和Chl (a+b)以及叶绿素荧光参数调节性能量耗散的量子产额Y(NPQ)、表观光合传递速率(ETR)和非光化学淬灭(NPQ)均在褪黑素浓度为0.1μmol·L-1时达到增加最大值;PSⅡ最大光合效率(Fv/Fm)、最大光能转化潜力(Fv/Fo)随褪黑素浓度升高逐渐降低;光化学淬灭(qL)随褪黑素浓度增加先下降后上升。(2)与CK(0μmol·L-1)相比,低浓度褪黑素显著降低小麦根和叶中过氧化物酶(POD)及小麦叶中过氧化氢酶(CAT)的活性,高浓度褪黑素处理显著增加小麦POD的活性;小麦根中丙二醛(MDA)含量随褪黑素浓度的增加先下降后上升。综上表明,适量褪黑素处理可促进小麦的生长,使小麦光合能力维持在较高水平,并通过POD和CAT调节不同褪...  相似文献   

20.
We investigated the effect of large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activase (RuBPCO-A) on photosynthesis and constructed two plant expression vectors and introduced them into rice cultivars (Oryza sativa f. japonica cv. Nipponbare) through Agrobacterium tumefaciens-mediated transformation. Plasmid pCBrbcSRca contained the cDNA of RuBPCO-A large isoform (rca) controlled by RuBPCO small subunit gene promoter (rbcS), and plasmid pCBUbi-antirca contained a reversed rca sequence driven by maize ubiquitin promoter. Transformants were screened by polymerase chain reaction (PCR), Southern and Western blot analysis. Compared to the control rice plants, RuBPCO activity was improved in the pCBrbcSRca rice plants, which is opposite to RuBPCO activity in the pCBUbi-antirca rice plants. Net photosynthetic rate, quantum yield of electron transport in photosystem 2, and steady state photochemical fluorescence quenching increased in the pCBrbcSRca plants, but decreased in the pCBUbi-antirca plants as compared to the controls. The pCBrbcSRca plants had heavier grains and accelerated development, while the pCBUbi-antirca plants showed reverse changes. Thus RuBPCO-A large isoform exerts considerable effect on photosynthesis and is a promising target for plant breeding to improve rice crop yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号