首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Certain G protein-coupled receptors (GPCRs) stimulate the activities of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), members of the MAPK family. We investigated the role of JNK and p38 MAPK activation induced by the alpha1B-adrenergic receptor in the proliferation of human embryonic kidney 293T cells. Activation of the alpha1B-adrenergic receptor resulted in inhibition of cell proliferation. This receptor-induced inhibition of proliferation was blocked by a kinase-deficient MKK4 and by the p38 MAPK inhibitor SB203580. Additionally, transfection of constitutively activated Galphaq into cells also led to inhibition of proliferation in a JNK- and p38 MAPK-dependent manner. These results demonstrate that the alpha1B-adrenergic receptor/Galphaq signaling inhibits cell proliferation through pathways involving JNK and p38 MAPK.  相似文献   

2.
We previously reported that the alpha1B-adrenergic receptor leads to activation of Rho family small GTPases, and in turn, c-Jun N-terminal kinase (JNK), which results in the inhibition of cell proliferation. Here, we show the involvement of the Rho family guanine nucleotide exchange factor (GEF) Dbl's Big Sister (Dbs) in the signaling pathway. Transfection of a Dbl-homology (DH) and pleckstrin-homology (PH) domain-deficient form of Dbs into cells blocked the alpha1B-adrenergic receptor-induced activation of JNK. Conversely, transfection of an isolated DH domain of Dbs induced JNK activation. Stimulation of the alpha1B-adrenergic receptor enhanced an intrinsic Cdc42-GEF activity of Dbs in a manner dependent on Src family tyrosine kinases. Additionally, DH and PH domain deficient Dbs blocked the receptor-induced inhibition of cell proliferation, while DH domain of Dbs inhibited cell proliferation via the JNK-dependent pathway. Taken together, Dbs may play an important role in the anti-mitogenic JNK pathway downstream of the alpha1B-adrenergic receptor.  相似文献   

3.
Heterotrimeric G proteins stimulate the activities of two stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase in mammalian cells. In this study, we examined whether alpha subunits of G(i) family activate JNK using transient expression system in human embryonal kidney 293 cells. Constitutively activated mutants of Galpha(i1), Galpha(i2), and Galpha(i3) increased JNK activity. In contrast, constitutively activated Galpha(o) and Galpha(z) mutants did not stimulate JNK activity. To examine the mechanism of JNK activation by Galpha(i), kinase-deficient mutants of mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7), which are known to be JNK activators, were transfected into the cells. However, Galpha(i)-induced JNK activation was not blocked effectively by kinase-deficient MKK4 and MKK7. In addition, activated Galpha(i) mutant failed to stimulate MKK4 and MKK7 activities. Furthermore, JNK activation by Galpha(i) was inhibited by dominant-negative Rho and Cdc42 and tyrosine kinase inhibitors, but not dominant-negative Rac and phosphatidylinositol 3-kinase inhibitors. These results indicate that Galpha(i) regulates JNK activity dependent on small GTPases Rho and Cdc42 and on tyrosine kinase but not on MKK4 and MKK7.  相似文献   

4.
Heterotrimeric G protein G(q) stimulates the activity of p38 mitogen-activated protein kinase (MAPK) in mammalian cells. To investigate the signaling mechanism whereby alpha and betagamma subunits of G(q) activate p38 MAPK, we introduced kinase-deficient mutants of mitogen-activated protein kinase kinase 3 (MKK3), MKK4, and MKK6 into human embryonal kidney 293 cells. The activation of p38 MAPK by Galpha(q) and Gbetagamma was blocked by kinase-deficient MKK3 and MKK6 but not by kinase-deficient MKK4. In addition, Galpha(q) and Gbetagamma stimulated MKK3 and MKK6 activities. The MKK3 and MKK6 activations by Galpha(q), but not by Gbetagamma, were dependent on phospholipase C and c-Src. Galpha(q) stimulated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-dependent manner. On the other hand, Gbetagamma activated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-, Rac-, and Cdc42-dependent manner. Gbetagamma-induced MKK3 and MKK6 activations were dependent on a tyrosine kinase other than c-Src. These results suggest that Galpha(q) and Gbetagamma stimulate the activity of p38 MAPK by regulating MKK3 and MKK6 through parallel signaling pathways.  相似文献   

5.
Gi- and Gq-coupled G protein-coupled receptors (GPCRs) have been shown to activate c-Jun N-terminal kinase (JNK), a subfamily of mitogen-activated protein kinases (MAPKs), through Rho family small GTPases in mammalian cells. We investigated the signaling pathway linking the Gs-coupled beta2-adrenergic receptor with JNK, using smooth muscle DDT1 MF-2 cells, which natively express the beta2-adrenergic receptor. Stimulation of the beta2-adrenergic receptor activated JNK in a time-dependent manner, and a cell-permeable cyclic adenosine monophosphate analogue (8-Br-cAMP) activated JNK. The beta2-adrenergic receptor- or 8-Br-cAMP-induced activation of JNK required Rho family small GTPases. Also, the beta2-adrenergic receptor or 8-Br-cAMP induced activation of Rho family small GTPases. These results demonstrate that the beta2-adrenergic receptor/cAMP leads to JNK activation through Rho family small GTPases in DDT1 MF-2 cells. Activation of Rho family small GTPases may provide a common step in GPCR-mediated JNK activation.  相似文献   

6.
Several extracellular stimuli mediated by G protein-coupled receptors activate c-fos promoter. Recently, we and other groups have demonstrated that signals from G protein-coupled receptors stimulate mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The activation of these three MAPKs is mediated in part by the G protein betagamma subunit (Gbetagamma). In this study, we characterized the signals from Gbetagamma to c-fos promoter using transient transfection of c-fos luciferase into human embryonal kidney 293 cells. Activation of m2 muscarinic acetylcholine receptor and overexpression of Gbetagamma, but not constitutively active Galphai2, stimulated c-fos promoter activity. The c-fos promoter activation by m2 receptor and Gbetagamma was inhibited by beta-adrenergic receptor kinase C-terminal peptide (betaARKct), which functions as a Gbetagamma antagonist. MEK1 inhibitor PD98059 and kinase-deficient mutant of JNK kinase, but not p38 MAPK inhibitor SB203580, attenuated the m2 receptor- and Gbetagamma-induced c-fos promoter activation. Activated mutants of Ras and Rho stimulated the c-fos promoter activity, and the dominant negative mutants of Ras and Rho inhibited the c-fos promoter activation by m2 receptor and Gbetagamma. Moreover, c-fos promoter activation by m2 receptor, Gbetagamma, and active Rho, but not active Ras, was inhibited by botulinum C3 toxin. These data indicated that both Ras- and Rho-dependent signaling pathways are essential for c-fos promoter activation mediated by Gbetagamma.  相似文献   

7.
8.
Heptahelical opioid receptors utilize Gi proteins to regulate a multitude of effectors including the classical adenylyl cyclases and the more recently discovered mitogen-activated protein kinases (MAPKs). The c-Jun NH2-terminal kinases (JNKs) belong to one of three subgroups of MAPKs. In NG108-15 neuroblastoma x glioma hybrid cells that endogenously express delta-opioid receptors, delta-agonist dose-dependently stimulated JNK activity in a pertussis toxin-sensitive manner. By using COS-7 cells transiently transfected with the cDNAs of delta-opioid receptor and hemagglutinin (HA)-tagged JNK, we delineated the signaling components involved in this pathway. Sequestration of Gbetagamma subunits by transducin suppressed the opioid-induced JNK activity. The possible involvement of the small GTPases was also examined. Expression of dominant negative mutants of Rac and Cdc42 blocked the opioid-induced JNK activation, and a partial inhibition was observed in the presence of the dominant negative mutant of Ras. In contrast, the dominant negative mutant of Rho did not affect the opioid-induced JNK activation. In addition, the receptor-mediated JNK activation was dependent on Src family tyrosine kinases, but independent of phosphatidylinositol-3 kinase and EGF receptor tyrosine kinases. Collectively, these results demonstrate functional regulation of JNK by the delta-opioid receptor, and this pathway requires Gbetagamma, Src kinases and the small GTPases Rac and Cdc42.  相似文献   

9.
10.
11.
12.
13.
The 5-HT1A receptor is a prototypical member of the large and diverse serotonin receptor family. One key role of this receptor is to stimulate cell proliferation and differentiation via the extracellular signal regulated protein kinase (ERK) mitogen activated protein (MAP) kinase. There are few reports on the ability of the 5-HT1A receptor to modulate other MAP kinases such as c-Jun N-terminal kinase (JNK), which is activated by various extracellular stimuli, resulting in cell growth, differentiation, and programmed cell death. We report here for the first time that the 5-HT1A receptor stimulates JNK. JNK stimulation was Pertussis toxin-sensitive and was mediated by Rho family low molecular weight GTPases. The 5-HT1A receptor also increased apoptosis, which was mimicked by the MEK inhibitor PD98059, and blocked by the JNK inhibitor SP600125. These results suggest that the 5-HT1A receptor stimulates both ERK-dependent anti-apoptotic pathways and JNK-dependent pro-apoptotic pathways in CHO cells.  相似文献   

14.
15.
16.
The leucine-zipper (LZ) and sterile-alpha motif (SAM) kinase (ZAK) belongs to the MAP kinase kinase kinase (MAP3K) when upon over-expression in mammalian cells activates the JNK/SAPK pathway. The mechanisms by which ZAK activity is regulated are not well understood. Co-expression of dominant-negative MKK7 but not MKK4 and ZAK significantly attenuates JNK/SAPK activation. This result suggests that ZAK activates JNK/SAPK mediated by downstream target, MKK7. Expression of ZAK but not kinase-dead ZAK in 10T1/2 cells results in the disruption of actin stress fibers and morphological changes. Therefore, ZAK activity may be involved in actin organization regulation. Expression of wild-type ZAK increases the cell population in the G(2)/M phase of the cell cycle, which may indicate G(2) arrest. Western blot analysis shows that the decreased cyclin E level correlated strongly with the low proliferative capacity of ZAK-expressed cells.  相似文献   

17.
Signaling events, including Rho GTPases and protein kinase C (PKC), are involved in cardiac hypertrophy. However, the mechanisms by which these pathways cooperate during the hypertrophic process remain unclear. Using an in vitro cyclic stretch model with neonatal rat cardiomyocytes, we demonstrated that stretch-induced activation of RhoA, Rac1/Cdc42, and phosphorylation of Rho-guanine nucleotide dissociation inhibitor (GDI) were prevented by inhibition or depletion of PKC, using chelerythrine and phorbol 12-myristate 13-acetate, indicating that phorbol ester-sensitive PKC isozymes may be upstream regulators of Rho GTPases. Using adenoviral-mediated gene transfer of wild-type (WT) and dominant-negative (DN) mutants of PKCalpha and delta, we found that stretch-induced activation of Rho GTPases and phosphorylation of Rho-GDI were mainly regulated by PKCalpha. PKCdelta was involved in regulation of the activation of Rac1. Stretch-induced increases in [(3)H]-leucine incorporation, myofibrillar reorganization and cell size, were blocked by inhibition of Rho GTPases, or overexpression of DN PKCalpha and delta, suggesting that PKCalpha and delta are both required in stretch-induced hypertrophy, through Rho GTPases-mediated signaling pathways. The mechanism, whereby PKC and Rho GTPases regulate hypertrophy, was associated with mitogen-activated protein (MAP) kinases. Stretch-stimulated phosphorylation of MEK1/ERK1/2 and MKK4/JNK was inhibited by overexpression of DN PKCalpha and delta, and that of MKK3/p38 inhibited by DN PKCdelta. The phosphorylation of ERK and JNK induced by overexpression of WT PKCalpha, and the phosphorylation of p38 induced by WT PKCdelta, were regulated by Rho GTPases. This study represents the first evidence that PKCalpha and delta are important regulators in mediating activation of Rho GTPases and MAP kinases, in the cyclic stretch-induced hypertrophic process.  相似文献   

18.
The stress kinase mitogen-activated protein kinase kinase 7 (MKK7) is a specific activator of c-Jun N-terminal kinase (JNK), which controls various physiological processes, such as cell proliferation, apoptosis, differentiation, and migration. Here we show that genetic inactivation of MKK7 resulted in an extended period of oscillation in circadian gene expression in mouse embryonic fibroblasts. Exogenous expression in cultured mammalian cells of an MKK7-JNK fusion protein that functions as a constitutively active form of JNK induced phosphorylation of PER2, an essential circadian component. Furthermore, JNK interacted with PER2 at both the exogenous and endogenous levels, and MKK7-mediated JNK activation increased the half-life of PER2 protein by inhibiting its ubiquitination. Notably, the PER2 protein stabilization induced by MKK7-JNK fusion protein reduced the degradation of PER2 induced by casein kinase 1ε. Taken together, our results support a novel function for the stress kinase MKK7 as a regulator of the circadian clock in mammalian cells at steady state.  相似文献   

19.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) family, plays an important role in a stress-induced signaling cascade. SAPK/JNK activation requires the phosphorylation of Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 (MKK4) and MKK7 (SEK2) have been identified as the upstream MAPK kinases. Here we examined the activation and phosphorylation sites of SAPK/JNK and differentiated the contribution of SEK1 and MKK7alpha1, -gamma1, and -gamma2 isoforms to the MAPK activation. In SEK1-deficient mouse embryonic stem cells, stress-induced SAPK/JNK activation was markedly impaired, and this defect was accompanied with a decreased level of the Tyr phosphorylation. Analysis in HeLa cells co-transfected with the two MAPK kinases revealed that the Thr and Tyr of SAPK/JNK were independently phosphorylated in response to heat shock by MKK7gamma1 and SEK1, respectively. However, MKK7alpha1 failed to phosphorylate the Thr of SAPK/JNK unless its Tyr residue was phosphorylated by SEK1. In contrast, MKK7gamma2 had the ability to phosphorylate both Thr and Tyr residues. In all cases, the dual phosphorylation of the Thr and Tyr residues was essentially required for the full activation of SAPK/JNK. These data provide the first evidence that synergistic activation of SAPK/JNK requires both phosphorylation at the Thr and Tyr residues in living cells and that the preference for the Thr and Tyr phosphorylation was different among the members of MAPK kinases.  相似文献   

20.
The c-Jun N-terminal kinase (JNK) signaling pathway plays a crucial role in cellular responses stimulated by stress-inducing agents and proinflammatory cytokines. The group I germinal center kinase family members selectively activate the JNK pathway. In this study, we have isolated a mouse cDNA encoding a protein kinase homologous to Nck-interacting kinase (NIK), a member of the group I germinal center kinase family. This protein kinase is expressed during the late stages of embryogenesis, but not in adult tissues, and thus named NESK (NIK-like embryo-specific kinase). NESK selectively activated the JNK pathway when overexpressed in HEK 293 cells but did not stimulate the p38 kinase or extracellular signal-regulated kinase (ERK) pathways. NESK-induced JNK activation was inhibited by the dominant negative mutants of MEKK1 and MKK4. Tumor necrosis factor (TNF)-alpha or TNF receptor-associated factor 2 (TRAF2) stimulated the NESK activity. Furthermore, the dominant negative NESK mutant inhibited the JNK activation induced by TNF-alpha or TRAF2. These results suggest that NESK, a novel activator of the JNK pathway, functions in coupling TRAF2 to the MEKK1 --> MKK4 --> JNK kinase cascade during the late stages of mammalian embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号