首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two α subunits and four β subunits with the structure of a double β-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (α1, α2, β1, and β2) from T. KS-1. All of them (α1-β1, α2-β1, α1-β2, and α2-β2) exist as α2β4 heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the β1 subunit interacted with the chaperonins more strongly than those with the β2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.  相似文献   

2.
Chaperonin is a double ring-shaped oligomeric protein complex, which captures a protein in the folding intermediate state and assists its folding in an ATP-dependent manner. The chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, is a group II chaperonin and is composed of two distinct subunits, α and β. Although these subunits are highly homologous in sequence, the homo-oligomer of the β-subunit is more thermostable than that of the α-subunit. To identify the region responsible for this difference in thermostability, we constructed domain-exchange mutants. The mutants containing the equatorial domain of the β-subunit were more resistant to thermal dissociation than the mutants with that of the α-subunit. Thermostability of a β-subunit mutant whose C-terminal 22 residues were replaced with those of the α-subunit decreased to the comparable level of that of the α-subunit homo-oligomer. These results indicate that the difference in thermostability between α- and β-subunits mainly originates in the C-terminal residues in the equatorial domain, only where they exhibit substantial sequence difference.Takao Yoshida, Taro Kanzaki, Ryo Iizuka and Toshihiro Komada contributed equally to this paper.  相似文献   

3.
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of α and β subunits and forms a “jellyfish-like” structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two α and two β subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of α (α1 and α2) and β subunits (β1 and β2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD β1 subunit at 1.9 Å resolution and its functional analysis. TsPFD β1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The β hairpin linkers of β1 subunits assemble to form a β barrel “body” around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the β1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric β1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD β1 subunits act as molecular chaperones in living cells of some archaea.  相似文献   

4.
The crystal structures of the group II chaperonins consisting of the alpha subunit with amino acid substitutions of G65C and/or I125T from the hyperthermophilic archaeum Thermococcus strain KS-1 were determined. These mutants have been shown to be active in ATP hydrolysis but inactive in protein folding. The structures were shown to be double-ring hexadecamers in an extremely closed form, which was consistent with the crystal structure of native alpha8beta8-chaperonin from Thermoplasma acidophilum. Comparisons of the present structures with the atomic structures of the GroEL14-GroES7-(ADP)7 complex revealed that the deficiency in protein-folding activity with the G65C amino acid substitution is caused by the steric hindrance of the local conformational change in an equatorial domain. We concluded that this mutant chaperonin with G65C substitution is deprived of the smooth conformational change in the refolding-reaction cycle. We obtained a new form of crystal with a distinct space group at a lower concentration of sulfate ion in the presence of nucleotide. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion. Such subunit rotation has never been characterized in group II chaperonins. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion.  相似文献   

5.
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45 ± 1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0 ± 0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105 ± 2 U mg−1, which was very similar to that of the native enzyme (110 ± 3 U mg−1). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K m-values for acetaldehyde and NADPH and higher K m-values for ethanol and NADP+. It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.  相似文献   

6.
A novel gene encoding a small neutral amino acid transporter was cloned from the genome of the hyperthermophilic archaeon Thermococcus sp. KS-1 by functional cloning using Escherichia coli strain AK430, which is defective in transporting glycine and D-alanine. The cloned gene, snatA, encoded a protein of 216 amino acid residues, SnatA, and was predicted to be a membrane protein with six membrane-spanning segments. E. coli AK430 cells transformed with snatA transported glycine with an apparent K(t) value of 24 micro M, which was one order of magnitude higher than that of other known glycine/alanine transporters, including cycA of E. coli and acp of thermophilic bacterium PS3. Competition studies revealed that SnatA transported various L-type neutral amino acids, but its substrate specificity was different from that of CycA or ACP. The glycine transport was inhibited by a protonophore, FCCP, or valinomycin plus nigericin, indicating that the process is dependent on an electrochemical potential of H(+). Homology searches revealed no homology with any transporters known to date. However, several hypothetical genes in prokaryote cells enrolled in the gene bank showed significantly high homology scores, indicating that snatA and its homologues form a family of prokaryotes. To our knowledge, this is the first report on the cloning of a gene of an amino acid transporter from a hyperthermophilic archaeon.  相似文献   

7.
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin β subunit more strongly than the α subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnβ subunits. Interestingly, chaperonin complexes containing two β subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of β subunits. The result suggests that all four β tentacles of prefoldin interact with the helical protrusions of CPN in the PFD–CPN complex as the previously proposed model that two adjacent PFD β subunits seem to interact with two CPN adjacent subunits.  相似文献   

8.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. strain NA1, revealed the presence of a 1,068-bp open reading frame encoding a protein consisting of 356 amino acids with a calculated molecular mass of 39,714 Da (GenBank accession no. DQ144132). Sequence analysis showed that it was similar to the putative aminopeptidase P (APP) of Thermococcus kodakaraensis KOD1. Amino acid residues important for catalytic activity and the metal binding ligands conserved in bacterial, nematode, insect, and mammalian APPs were also conserved in the Thermococcus sp. strain NA1 APP. The archaeal APP, designated TNA1_APP (Thermococcus sp. strain NA1 APP), was cloned and expressed in Escherichia coli. The recombinant enzyme hydrolyzed the amino-terminal Xaa-Pro bond of Lys(Nepsilon-Abz)-Pro-Pro-pNA and the dipeptide Met-Pro (Km, 0.96 mM), revealing its functional identity. Further enzyme characterization showed the enzyme to be a Co2+-, Mn2+-, or Zn2+-dependent metallopeptidase. Optimal APP activity with Met-Pro as the substrate occurred at pH 5 and a temperature of 100 degrees C. The APP was thermostable, with a half-life of >100 min at 80 degrees C. This study represents the first characterization of a hyperthermophilic archaeon APP.  相似文献   

9.
To study the difference in expression of the chaperonin alpha- and beta-subunits in Thermococcus strain KS-1 (T. KS-1), we measured their intracellular contents at various growth temperatures using subunit-specific antibodies. The beta-subunit was significantly more abundant with increasing temperature (maximum at 93 degrees C), whereas the alpha-subunit was not. Native PAGE with Western blot analysis indicated that the natural chaperonins in the crude extracts of T. KS-1 cells grown between 65 degrees C and 95 degrees C migrate as single bands with different mobility. The recombinant alpha- and beta-subunit homo-oligomers migrated differently from each other and from natural chaperonins. Immunoprecipitation also showed that the natural chaperonin was the hetero-oligomer. These results indicate that chaperonin in T. KS-1 formed a hetero-oligomer with variable subunit composition, and that the beta-subunit may be adapted to a higher temperature than the alpha-subunit. T. KS-1 probably changes its chaperonin subunit composition to acclimatize to the ambient temperature.  相似文献   

10.
The family B DNA polymerase gene of Thermococcus thioreducens, an archaeon recently isolated from the Rainbow hydrothermal vent field, was cloned and its protein product expressed, purified and characterized. The gene was found to encode a 1,311 amino acid chain including an intein sequence of 537 residues. Phylogenetic analysis revealed a predominantly vertical type of inheritance of the intein in the Thermococcales order. Primary sequence analysis of the mature protein (TthiPolB) showed significant sequence conservation among DNA polymerases in this family. The structural fold of TthiPolB was predicted against the known crystallographic structure of a family B DNA polymerase from Thermococcus gorgonarius, allowing regional domain assignments within the TthiPolB sequence. The recombinant TthiPolB was overexpressed in Escherichia coli and purified for biochemical characterization. Compared with other DNA polymerases from the Thermococcales order, TthiPolB was found to have moderate thermal stability and fidelity, and a high extension rate, consistent with an extremely low K m corresponding to the dNTP substrate. TthiPolB performed remarkably well in a wide range of PCR conditions, being faster, more stable and more accurate than many commonly used enzymes.  相似文献   

11.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed the presence of an 1,497 bp open reading frame, encoding a protein of 499 amino acids. The deduced amino acid sequence was similar to thermostable carboxypeptidase 1 from Pyrococcus furiosus, a member of peptidase family M32. Five motifs, including the HEXXH motif with two histidines coordinated with the active site metal, were conserved. The carboxypeptidase gene was cloned and overexpressed in Escherichia coli. Molecular masses assessed by SDS-PAGE and gel filtration were 61 kDa and 125 kDa respectively, which points to a dimeric structure for the recombinant enzyme, designated TNA1_CP. The enzyme showed optimum activity toward Z-Ala-Arg at pH 6.5 and 70-80 degrees C (k(cat)/K(m)=8.3 mM(-1) s(-1)). In comparison with that of P. furiosus CP (k(cat)/K(m)=667 mM(-1) s(-1)), TNA1_CP exhibited 80-fold lower catalytic efficiency. The enzyme showed broad substrate specificity with a preference for basic, aliphatic, and aromatic C-terminal amino acids. This broad specificity was confirmed by C-terminal ladder sequencing of porcine N-acetyl-renin substrate by TNA1_CP.  相似文献   

12.
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. The manner by which prefoldin interacts with a group II chaperonin is poorly understood. Here, we have examined the prefoldin interaction site in the archaeal group II chaperonin, comparing the interaction of two Thermococcus chaperonins and their mutants with Pyrococcus prefoldin by surface plasmon resonance. We show that the mutations of Lys250 and Lys256 of Thermococcus alpha chaperonin residues to Glu residues increase the affinity to Pyrococcus prefoldin to the level of Thermococcus beta chaperonin and Pyrococcus chaperonin, indicating that their Glu250 and Glu256 residues of the helical protrusion region are responsible for relatively stronger binding to Pyrococcus prefoldin than Thermococcus alpha chaperonin. Since the putative chaperonin binding sites in the distal ends of Pyrococcus prefoldin are rich in basic residues, electrostatic interaction seems to be important for their interaction. The substrate protein transfer rate from prefoldin correlates well with its affinity for chaperonin.  相似文献   

13.
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.  相似文献   

14.
We conducted a comparative analysis of the effects of beryllium fluoride (BeFx) on protein folding mediated by the α- and β-subunit homooligomers (α16mer or β16mer) from the hyperthermophilic archaeum Thermococcus strain KS-1. BeFx inhibited the ATPase activities of both α16mer and β16mer with equal efficiency. This indicated that BeFx replaces the γ-phosphate of chaperonin-bound ATP, thereby forming a stable chaperonin–ADP–BeFx complex. In the presence of ATP and BeFx, both of the two chaperonin subunits mediated green fluorescent protein (GFP) folding. Gel filtration chromatography revealed that the refolded GFP was retained by both chaperonins. Protease digestion and electron microscopic analyses showed that both chaperonin–ADP–BeFx complexes of the two subunits adopted a symmetric closed conformation with the built-in lids of both rings closed and that protein folding took place in their central cavities. These data indicated that basic protein folding mechanisms of α16mer and β16mer are likely similar although there were some apparent differences. While β16mer-mediated GFP refolding in the presence of ATP–BeFx that proceeded more rapidly than in the presence of ATP alone and reached a twofold higher plateau than that achieved with AMP–PNP, the folding mediated by the α16mer that proceeded with much lower yields. A mutant of α16mer, trapα, which traps the unfolded and partially folded substrate protein, did not affect the ATP–BeFx-dependent GFP folding by β16mer but it suppressed that mediated by α16mer to the level of spontaneous folding. These results suggested that β16mer differed from the α16mer in nucleotide binding affinity or the rate of nucleotide hydrolysis.  相似文献   

15.
Enzymatic and thermodynamic characteristics of type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (Tk-IDI) from Thermococcus kodakaraensis, which catalyzes the interconversion of IPP and DMAPP, were examined. FMN was tightly bound to Tk-IDI, and the enzyme required NADPH and Mg2+ for the isomerization in both directions. The melting temperature (Tm), the change of enthalpy (deltaH(m)), and the heat capacity change (deltaC(p)) of Tk-IDI were 88.0 degrees C, 444 kJ mol(-1), and 13.2 kJ mol(-1) K(-1), respectively, indicating that Tk-IDI is fairly thermostable. Kinetic parameters dramatically changed when the temperature crossed 80 degrees C even though its native overall structure was stably maintained up to 90 degrees C, suggesting that local conformational change would occur around 80 degrees C. This speculation was supported by the result of the circular dichroism analysis that showed the shift of the alpha-helical content occurred at 80 degrees C.  相似文献   

16.
Yoshida T  Kawaguchi R  Maruyama T 《FEBS letters》2002,514(2-3):269-274
The archaeal chaperonin-mediated folding of green fluorescent protein (GFP) was examined in the presence of various nucleotides. The recombinant alpha- and beta-subunit homo-oligomers and natural chaperonin oligomer from Thermococcus strain KS-1 exhibited folding activity with not only ATP but also with CTP, GTP, or UTP. The ADP-bound form of both recombinant and natural chaperonin had the ability to capture non-native GFP, but could not refold it in the presence of CTP, GTP or UTP until ATP was supplied. The archaeal chaperonin thus utilized ATP, but could not use other nucleoside triphosphates in the cytoplasm where ADP was present.  相似文献   

17.
We describe a new species, Thermococcus litoralis, which is different from the type species Thermococcus celer in molecular, morphological and physiological characteristics.Abbreviations 3 x SSC (standard saline citrate) - 0.45 M NaCl 0.045 M Na3-citrate  相似文献   

18.
Enrichments for anaerobic, organotrophic hyperthermophiles were performed with hydrothermal chimney samples collected from the Mid-Atlantic Ridge at a depth of 3,550 m (23°22N, 44°57W) and the Guaymas Basin (27°01N, 111°24W) at a depth of 2,616 m. Positive enrichments were submitted to -irradiation at doses of 20 and 30 kGy. Two hyperthermophilic, anaerobic, sulfur-metabolizing archaea were isolated. Strain EJ1T was isolated from chimney samples collected from the Mid-Atlantic Ridge after -irradiation at 20 kGy, and strain EJ2T was isolated from the Guaymas Basin after -irradiation at 30 kGy. Only strain EJ2T was motile, and both formed regular cocci. These new strains grew between 55 and 95 °C with the optimal temperature being 88 °C. The optimal pH for growth was 6.0, and the optimal NaCl concentration for growth was around 20 g l–1. These strains were obligate anaerobic heterotrophs that utilized yeast extract, tryptone, and peptone as a carbon source for growth. Ten amino acids were essential for the growth of strain EJ1T, such as arginine, aspartic acid, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tyrosine, and valine, while strain EJ2T was unable to grow on a mixture of amino acids. Elemental sulfur or cystine was required for EJ2T growth and was reduced to hydrogen sulfide. Rifampicin inhibited growth for both strains EJ1T and EJ2T. The G+C contents of the genomic DNA were 52.3 and 54.5 mol% for EJ1T and EJ2T, respectively. As determined by 16S rRNA gene sequence analysis, these strains were more closely related to Thermococcus gorgonarius, T. celer, T. guaymasensis, T. profundus, and T. hydrothermalis. However, no significant homology was observed between them with DNA–DNA hybridization. These novel organisms also possess phenotypic traits that differ from those of its closest phylogenetic relatives. Therefore, it is proposed that these isolates, which are amongst the most radioresistant hyperthermophilic archaea known to date with T. gammatolerans (Jolivet et al. 2003a), should be described as novel species T. marinus sp. nov. and T. radiotolerans sp. nov. The type strain of T. marinus is strain EJ1T (=DSM 15227T=JCM 11825T) and the type strain of T. radiotolerans is strain EJ2T (=DSM 15228T=JCM 11826T).Communicated by J. WiegelThe GenBank accession numbers for the 16S rRNA sequence of Thermococcus marinus strain EJ1T and Thermococcus radiotolerans EJ2T are AF479012 and AF479013, respectively.  相似文献   

19.
Genomic analysis of Thermococcus sp. NA revealed the presence of a 3,927-base-pair (bp) family B-type DNA polymerase gene, TNA1_pol. TNA1_pol, without its intein, was overexpressed in Escherichia coli, purified using metal affinity chromatography, and characterized. TNA1_pol activity was optimal at pH 7.5 and 75 degrees C. TNA1_pol was highly thermostable, with a half-life of 3.5 h at 100 degrees C and 12.5 h at 95 degrees C. Polymerase chain reaction parameters of TNA1_pol such as error-rate, processivity, and extension rate were measured in comparison with rTaq, Pfu, and KOD DNA polymerases. TNA1_pol averaged one incorrect bp every 4.45 kilobases (kb), and had a processivity of 150 nucleotides (nt) and an extension rate of 60 bases/s. Thus, TNA1_pol has a much faster elongation rate than Pfu DNA polymerase with 7-fold higher fidelity than that of rTaq.  相似文献   

20.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed an ORF of 1689 bases encoding 562 amino acids that showed a high similarity to DNA ligases from other hyperthermophilic archaea. The ligase, which was designated TNA1_lig (Thermococcus sp. NA1 ligase), was cloned and expressed in Escherichia coli. The recombinant TNA1_lig was purified by metal affinity chromatography. The optimum ligase activity of the recombinant TNA1_lig occurred at 80 °C and pH 7.5. The enzyme was activated by MgCl2 and ZnCl2 but was inhibited by MnCl2 and NiCl2. Additionally, the enzyme was activated by either ATP or NAD+. Revisions requested 27 October 2005; Revisions received 14 December 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号