首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
Wnt/beta-catenin signaling is essential to early development. Activation of Frizzled-1 by Wnts induces nuclear accumulation of beta-catenin and activation of Lef/Tcf-dependent gene expression. Casein kinase 2 has been shown to affect Wnt/beta-catenin signaling. How casein kinase 2 exerts an influence in Wnt signaling is not clear; casein kinase 2 has been reported to be constitutively active (i.e. not regulated). Herein we show to the contrary that casein kinase 2 activity is rapidly and transiently increased in response to Wnt3a stimulation and is essential for Wnt/beta-catenin signaling. Chemical inhibition of casein kinase 2 or suppression of its expression blocks Frizzled-1 activation of Lef/Tcf-sensitive gene expression. Treatment with pertussis toxin or knock down of Galpha(q) or Galpha(o) blocks Wnt stimulation of casein kinase 2 activation, as does suppression of the phosphoprotein Dishevelled, demonstrating that casein kinase 2 is downstream of heterotrimeric G proteins and Dishevelled. Expression of a constitutively active mutant of either Galpha(q) or Galpha(o) stimulates casein kinase 2 activation and Lef/Tcf-sensitive gene expression. Thus, casein kinase 2 is shown to be regulated by Wnt3a and essential to stimulation of the Frizzled-1/beta-catenin/Lef-Tcf pathway.  相似文献   

3.
Vascular smooth muscle contractile state is regulated by intracellular calcium levels. Nitric oxide causes vascular relaxation by stimulating production of cyclic GMP, which activates type I cGMP-dependent protein kinase (PKGI) in vascular smooth muscle cells (VSMC), inhibiting agonist-induced intracellular Ca2+ mobilization ([Ca2+]i). The relative roles of the two PKGI isozymes, PKGIalpha and PKGIbeta, in cyclic GMP-mediated inhibition of [Ca2+]i in VSMCs are unclear. Here we have investigated the ability of PKGI isoforms to inhibit [Ca2+]i in response to VSMC activation. Stable Chinese hamster ovary cell lines expressing PKGIalpha or PKGIbeta were created, and the ability of PKGI isoforms to inhibit [Ca2+]i in response to thrombin receptor stimulation was examined. In Chinese hamster ovary cells stably expressing PKGIalpha or PKGIbeta, 8-Br-cGMP activation suppressed [Ca2+]i by thrombin receptor activation peptide (TRAP) by 98 +/- 1 versus 42 +/- 5%, respectively (p <0.002). Immunoblotting studies of cultured human VSMC cells from multiple sites using PKGIalpha- and PKGIbeta-specific antibodies showed PKGIalpha is the predominant VSMC PKGI isoform. [Ca2+]i following thrombin receptor stimulation was examined in the absence or presence of cyclic GMP in human coronary VSMC cells (Co403). 8-Br-cGMP significantly inhibited TRAP-induced [Ca2+]i in Co403, causing a 4-fold increase in the EC50 for [Ca2+]i. In the absence of 8-Br-cGMP, suppression of PKGIalpha levels by RNA interference (RNAi) led to a significantly greater TRAP-stimulated rise in [Ca2+]i as compared with control RNAi-treated Co403 cells. In the presence of 8-Br-cGMP, the suppression of PKGIalpha expression by RNAi led to the complete loss of cGMP-mediated inhibition of [Ca2+]i. Adenoviral overexpression of PKGIbeta in Co403 cells was unable to alter TRAP-stimulated Ca2+ mobilization either before or after suppression of PKGIalpha expression by RNAi. These results support that PKGIalpha is the principal cGMP-dependent protein kinase isoform mediating inhibition of VSMC activation by the nitric oxide/cyclic GMP pathway.  相似文献   

4.
5.
In human platelets, thrombin activates Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) and mobilizes Ca2+ concomitantly, whereas 12-O-tetradecanoylphorbol-13-acetate (TPA) may be intercalated into membranes and directly activates protein kinase C without mobilization of Ca2+ in sufficient quantities. A series of experiments with TPA and Ca2+-ionophore (A23187) indicates that activation of protein kinase C is a prerequisite requirement for release of serotonin, and that this enzyme activation and Ca2+ mobilization act synergistically to elicit a full cellular response. Both cyclic AMP and cyclic GMP inhibit activation of protein kinase C by prohibiting the signal-dependent breakdown of inositol phospholipid to produce diacyl-glycerol, but none of these cyclic nucleotides prevents the TPA-induced activation of this enzyme.  相似文献   

6.
Structure-function analysis of Frizzleds   总被引:1,自引:0,他引:1  
Frizzleds, cell surface receptors that mediate the actions of Wnt ligands on early development, are heptahelical (based upon hydropathy analysis) and couple to heterotrimeric G proteins. The primary structure of all ten mammalian Frizzleds display many landmarks observed in virtually all G protein-coupled receptors, including an exofacial N-terminus that is N-glycosylated, the presence of seven hydrophobic transmembrane segments predicted to form alpha-helixes, and three intracellular loops as well as a cytoplasmic, C-terminal tail that harbor suspected sites for protein phosphorylation. Prediction of the G proteins to which Frizzleds mediate signaling based upon a bioinformatic analysis of the primary sequence of the intracellular domains are in good agreement with functional screens in Drosophila, zebrafish, and mouse models of development, e.g., predicting Frizzled-1 to interact with members of the Gi/Go protein family. Likewise various Wnt signaling pathways are sensitive to treatment with pertussis toxin and knock-down of specific G protein alpha-subunits. Homology among the sequences encoding the cytoplasmic domains of human Frizzleds is high and the various Frizzleds can be segregated into subsets predicted to share some common downstream signaling elements. Among different species, homologies can reveal conservation of signaling to cognate G protein partners. Additionally, cytoplasmic domains of the prototypic beta2-adrenergic receptor can be substituted with those from either Frizzled-1 or Frizzled-2 to create chimeric receptors that are activated by beta-adrenergic agonists, yet signal with high fidelity to the Wnt/beta-catenin and Wnt/Ca2+, cyclic GMP pathways, respectively, regulating key aspects of early development. The nature of Frizzled-based signaling complexes, their temporal assembly, and spatial distribution via scaffold protein remains to be elucidated, as does whether or not these Wnt receptors display agonist-induced desensitization, internalization, and re-cycling to the cell membrane.  相似文献   

7.
8.
9.
Growing evidence suggests that Ca(2+) overload is one of the major contributors of myocardial ischemia/reperfusion-induced injury. Since Frizzled-2 receptor, a seven transmembrane protein, transduces downstream signaling by specialized binding of Wnt5a to increase intracellular Ca(2+) release, this work aimed to investigate the effect of Frizzled-2 on Ca(2+) accumulation in H9c2 cells, which were subjected to hypoxia/reoxygenation to mimic myocardial ischemia/reperfusion. After exposing H9c2 cells to hypoxia/reoxygenation, we observed higher expression of Frizzled-2 and Wnt5a as compared to control group cells. Hypoxia/reoxygenation-induced intracellular Ca(2+) accumulation approached that of cells transfected with frizzled-2 plasmid. In cells treated with RNAi specifically designed against frizzled-2, intracellular Ca(2+) in both hypoxia/reoxygenation-treated cells and plasmid-treated cells were decreased. Rats that underwent ischemia/reperfusion injury exhibited increased intracellular Ca(2+) with high expression levels of Frizzled-2 and Wnt5a as compared to the sham group. Our data indicates that upon binding to Wnt5a, increased Frizzled-2 expression after hypoxia/reoxygenation treatment activated intracellular calcium release in H9c2 cells. Our findings provide a new perspective in understanding calcium overload in myocardial ischemia/reperfusion.  相似文献   

10.
Small differences in amplitude, duration, and temporal patterns of change in the concentration of free intracellular Ca2+ ([Ca2+](i)) can profoundly affect cell physiology, altering programs of gene expression, cell proliferation, secretory activity, and cell survival. We report a novel mechanism for amplitude modulation of [Ca2+](i) that involves mitogen-activated protein kinase (MAPK). We show that epidermal growth factor (EGF) potentiates gastrin-(1-17) (G17)-stimulated Ca2+ release from intracellular Ca2+ stores through a MAPK-dependent pathway. G17 activation of the cholecystokinin/gastrin receptor (CCK(2)R), a G protein-coupled receptor, stimulates release of Ca2+ from inositol 1,4,5-triphosphate-sensitive Ca2+ stores. Pretreating rat intestinal epithelial cells expressing CCK(2)R with EGF increased the level of G17-stimulated Ca2+ release from intracellular stores. The stimulatory effect of EGF on CCK(2)R-mediated Ca2+ release requires activation of the MAPK kinase (MEK)1,2/extracellular signal-regulated kinase (ERK)1,2 pathway. Inhibition of the MEK1,2/ERK1,2 pathway by either serum starvation or treatment with selective MEK1,2 inhibitors PD98059 and U0126 or expression of a dominant-negative mutant form of MEK1 decreased the amplitude of the G17-stimulated Ca2+ release response. Activation of the MEK1,2/ERK1,2 pathway either by pretreating cells with EGF or by expression of constitutively active K-ras (K-rasV12G) or MEK1 (MEK1*) increased the amplitude of G17-stimulated Ca2+ release. Although EGF, MEK1*, and K-rasV12G activated the MEK1,2/ERK1,2 pathway, they did not increase [Ca2+](i) in the absence of G17. These data demonstrate that the activation state of the MEK1,2/ERK1,2 pathway can modulate the amplitude of the CCK(2)R-mediated Ca2+ release response and identify a novel mechanism for cross-talk between EGF receptor- and CCK(2)R-regulated signaling pathways.  相似文献   

11.
Activation of the Wnt signaling cascade provides key signals during development and in disease. Here we provide evidence, by designing a Wnt receptor with ligand-independent signaling activity, that physical proximity of Arrow (LRP) to the Wnt receptor Frizzled-2 triggers the intracellular signaling cascade. We have uncovered a branch of the Wnt pathway in which Armadillo activity is regulated concomitantly with the levels of Axin protein. The intracellular pathway bypasses Gsk3beta/Zw3, the kinase normally required for controlling beta-catenin/Armadillo levels, suggesting that modulated degradation of Armadillo is not required for Wnt signaling. We propose that Arrow (LRP) recruits Axin to the membrane, and that this interaction leads to Axin degradation. As a consequence, Armadillo is no longer bound by Axin, resulting in nuclear signaling by Armadillo.  相似文献   

12.
A number of lines of evidence indicate that the Ca2+ and cyclic AMP signalling systems interact in NCB-20 cells. However, to date, the regulation of [Ca2+]i homeostasis has not been studied in this cell line. The present study aimed to clarify our understanding of [Ca2+]i homeostasis in these cells and to evaluate tools that manipulate [Ca2+]i, independently of protein kinase C effects. Bradykinin, by a B2-receptor, elevated [Ca2+]i by a pertussis-toxin-insensitive mechanism. The BK-stimulated [Ca2+]i rise originated from intracellular sources, without a contribution from Ca2+ entry mechanisms. The effect of BK was precluded by pretreatment with thapsigargin and ionomycin--compounds that elevated [Ca2+]i independent of phospholipase C activation. Both compounds, however, exerted effects in addition to stimulating release of Ca2+ from BK-sensitive stores; the BK-sensitive Ca2+ pool was a subset of the thapsigargin-sensitive pool; ionomycin strongly stimulates Ca2+ entry. Activation of protein kinases A and C attenuated the duration of the BK-induced rise in [Ca2+]i, without affecting the peak [Ca2+]i, suggesting interference with the BK response at a step downstream of the activation of phospholipase C. Application of these approaches should enhance the delineation of the consequences of Ca2+ mobilization on cyclic AMP accumulation.  相似文献   

13.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   

14.
A capacitative Ca2+ entry (CCE) pathway, activated by depletion of intracellular Ca2+ stores, is thought to mediate much of the Ca2+ entry evoked by receptors that stimulate phospholipase C (PLC). However, in A7r5 vascular smooth muscle cells, vasopressin, which stimulates PLC, empties intracellular Ca2+ stores but simultaneously inhibits their ability to activate CCE. The diacylglycerol produced with the IP3 that empties the stores is metabolized to arachidonic and this leads to activation of nitric oxide (NO) synthase, production of NO and cyclic GMP, and consequent activation of protein kinase G. The latter inhibits CCE. In parallel, NO directly activates a non-capacitative Ca2+ entry (NCCE) pathway, which is entirely responsible for the Ca2+ entry that occurs in the presence of vasopressin. This reciprocal regulation of two Ca2+ entry pathways ensures that there is sequential activation of first NCCE in the presence of vasopressin, and then a transient activation of CCE when vasopressin is removed. We suggest that the two routes for Ca2+ entry may selectively direct Ca2+ to processes that mediate activation and then recovery of the cell.  相似文献   

15.
Platelets contain high levels of Src family kinases (SFKs), but their functional role downstream of G protein pathways has not been completely understood. We found that platelet shape change induced by selective G(12/13) stimulation was potentiated by SFK inhibitors, which was abolished by intracellular calcium chelation. Platelet aggregation, secretion, and intracellular Ca(2+) mobilization mediated by low concentrations of SFLLRN or YFLLRNP were potentiated by SFK inhibitors. However, 2-methylthio-ADP-induced intracellular Ca(2+) mobilization and platelet aggregation were not affected by PP2, suggesting the contribution of SFKs downstream of G(12/13), but not G(q)/G(i), as a negative regulator to platelet activation. Moreover, PP2 potentiated YFLLRNP- and AYPGKF-induced PKC activation, indicating that SFKs downstream of G(12/13) regulate platelet responses through the negative regulation of PKC activation as well as calcium response. SFK inhibitors failed to potentiate platelet responses in the presence of G(q)-selective inhibitor YM254890 or in G(q)-deficient platelets, indicating that SFKs negatively regulate platelet responses through modulation of G(q) pathways. Importantly, AYPGKF-induced platelet aggregation and PKC activation were potentiated in Fyn-deficient but not in Lyn-deficient mice compared with wild-type littermates. We conclude that SFKs, especially Fyn, activated downstream of G(12/13) negatively regulate platelet responses by inhibiting intracellular calcium mobilization and PKC activation through G(q) pathways.  相似文献   

16.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase (protein kinase G) partially purified from silkworm pupae was selectively activated by cyclic GMP at lower concentrations. Nevertheless, the enzyme seemed to differ from adenosine 3':5'-monophosphate-dependent protein kinase (protein kinase A) with respect to the mode of response to cyclic nucleotides. The catalytic activity and cyclic GMP-binding activity were not dissociated by cyclic GMP in a manner similar to that described for protein kinase A. The enzyme was not inhibited by regulatory subunit of protein kinase A nor by protein inhibitor. A sulfhydryl compound such as 2-mercaptoethanol or glutathione was essential for the activation by cyclic GMP, and an extraordinary high concentration of either Mg2+ (100 mM) or Mn2+ (25 mM) was needed for maximal stimulation by cyclic GMP. A polyamine such as spermine, spermidine, or putrescine could substitute partly for the cation. Kinetic analysis indicated that Km for ATP was decreased whereas Ka for cyclic GMP was increased significantly at high concentrations of the cation. The effect of the cation to decrease Km for ATP was not evident in the absence of a sulfhydryl compound. These characteristics of protein kinase G described above were not observed for protein kinase A which was obtained from the same organism.  相似文献   

17.
Calcium, phospholipid turnover and transmembrane signalling   总被引:13,自引:0,他引:13  
Turnover of phosphatidylinositol, which is provoked by various neurotransmitters, peptide hormones and many other biologically active substances, appears to serve as a signal for the transmembrane control of protein phosphorylation through activation of a novel protein kinase (C-kinase). The activation of this enzyme absolutely requires Ca2+ and phosphatidylserine. Diacylglycerol derived from the receptor-linked breakdown of phosphatidylinositol dramatically increases the affinity of C-kinase for Ca2+, and thereby renders this enzyme fully active without a net increase in the concentration of Ca2+. Under appropriate conditions synthetic diacylglycerol directly added to intact cell systems activates C-kinase fully without interaction with surface receptors. By using such synthetic diacylglycerol and the Ca2+ ionophore A23187, it is shown that either receptor-linked protein phosphorylation or Ca2+ mobilization alone is merely a prerequisite but not a sufficient requirement, and both are synergistically effective for causing a full physiological cellular response. In some tissues cyclic nucleotides, both cyclic AMP and cyclic GMP, may inhibit the receptor-linked breakdown of phosphatidylinositol, and appear to provide negative control that prevents over-response.  相似文献   

18.
Anti-immunoglobulin antibodies (anti-Ig) can stimulate a majority of resting B cells via their receptor Ig. Evidence suggests that the signals generated after this ligand-receptor interaction may be transduced via hydrolysis of inositol phospholipids. In other systems, the ability of inositol phospholipid hydrolysis to link receptor-ligand interactions to subsequent activational events has been suggested to relate to the ability of metabolic intermediates of this hydrolytic process to facilitate activation of protein kinase C and mobilization of Ca+2. In this study, we investigated the importance of protein kinase C and Ca+2 mobilization in the signaling mechanism by which anti-Ig drives B cells to undergo G0 to G1 transition. Our results show that pharmacologic inhibition of either protein kinase C activity or channel-mediated Ca+2 influx completely abrogates the increase in RNA synthesis associated with B cell activation after stimulation by anti-Ig. This suggests that pathways leading to both protein kinase C activation and elevation of intracellular Ca+2 are critical for receptor Ig-mediated G0 to G1 transition. Furthermore, studies in which anti-Ig-induced signaling could be bypassed by directly facilitating Ca+2 mobilization and protein kinase C activation using Ca+2 ionophore and phorbol diester show that these events are sufficient to drive the majority of resting B cells into G1 in the absence of additional signaling from accessory cells or extra-cellular factors. However, like anti-Ig-induced stimulation, Ca+2 ionophore and phorbol diester are relatively inefficient in driving B cells that have entered G1 into S phase. We discuss the relevance of these results towards the transduction mechanism linking B cell membrane-associated Ig-generated signals with subsequent activation events.  相似文献   

19.
Formation of inositol 1,4,5-trisphosphate (IP3) by phospholipase C (PLC) with subsequent release of Ca2+ from intracellular stores, is one of the major Ca2+ signalling pathways triggered by G-protein-coupled receptors (GPCRs). However, in a large number of cellular systems, Ca2+ mobilization by GPCRs apparently occurs independently of the PLC-IP3 pathway, mediated by an as yet unknown mechanism. The present study investigated whether sphingosine kinase activation, leading to production of sphingosine-1-phosphate (SPP), is involved in GPCR-mediated Ca2+ signalling as proposed for platelet-derived growth factor and FcepsilonRI antigen receptors. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by m2 and m3 muscarinic acetylcholine receptors (mAChRs) expressed in HEK-293 cells without affecting mAChR-induced PLC stimulation. Activation of mAChRs rapidly and transiently stimulated production of SPP in HEK-293 cells. Finally, intracellular injection of SPP induced a rapid and transient Ca2+ mobilization in HEK-293 cells which was not antagonized by heparin. We conclude that mAChRs utilize the sphingosine kinase-SPP pathway in addition to PLC-IP3 to mediate Ca2+ mobilization. As Ca2+ signalling by various, but not all, GPCRs in different cell types was likewise attenuated by the sphingosine kinase inhibitors, we suggest a general role for sphingosine kinase, besides PLC, in mediation of GPCR-induced Ca2+ signalling.  相似文献   

20.
Dishevelled activates Ca2+ flux,PKC, and CamKII in vertebrate embryos   总被引:1,自引:0,他引:1  
Wnt ligands and Frizzled (Fz) receptors have been shown to activate multiple intracellular signaling pathways. Activation of the Wnt-beta-catenin pathway has been described in greatest detail, but it has been reported that Wnts and Fzs also activate vertebrate planar cell polarity (PCP) and Wnt-Ca2+ pathways. Although the intracellular protein Dishevelled (Dsh) plays a dual role in both the Wnt-beta-catenin and the PCP pathways, its potential involvement in the Wnt-Ca2+ pathway has not been investigated. Here we show that a Dsh deletion construct, XDshDeltaDIX, which is sufficient for activation of the PCP pathway, is also sufficient for activation of three effectors of the Wnt-Ca2+ pathway: Ca2+ flux, PKC, and calcium/calmodulin-dependent protein kinase II (CamKII). Furthermore, we find that interfering with endogenous Dsh function reduces the activation of PKC by Xfz7 and interferes with normal heart development. These data suggest that the Wnt-Ca2+ pathway utilizes Dsh, thereby implicating Dsh as a component of all reported Fz signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号