首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Priming of human neutrophils with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by treatment with formyl-methionyl-leucyl-phenylalanine (fMLP) stimulates cells in a physiologically relevant manner with modest 5-lipoxygenase activation and formation of leukotrienes. However, pretreatment of neutrophils with thimerosal, an organomercury thiosalicylic acid derivative, led to a dramatic increase (>50-fold) in the production of leukotriene B(4) and 5-hydroxyeicosatetraenoic acid, significantly higher than that observed after stimulation with calcium ionophore A23187. Little or no effect was observed with thimerosal alone or in combination with either GM-CSF or fMLP. Elevation of [Ca(2+)](i) induced by thimerosal in neutrophils stimulated with GM-CSF/fMLP was similar but more sustained compared with samples where thimerosal was absent. However, [Ca(2+)](i) was significantly lower compared with calcium ionophore-treated cells, suggesting that a sustained calcium rise was necessary but not sufficient to explain the effects of this compound on the GM-CSF/fMLP-stimulated neutrophil. Thimerosal was found to directly inhibit neutrophil lysophospholipid:acyl-CoA acyltransferase activity at the doses that stimulate leukotriene production, and analysis of lysates from neutrophil preparations stimulated in the presence of thimerosal showed a marked increase in free arachidonic acid, supporting the inhibition of the reincorporation of this fatty acid into the membrane phospholipids as a mechanism of action for this compound. The dramatic increase in production of leukotrienes by neutrophils when a physiological stimulus such as GM-CSF/fMLP is employed in the presence of thimerosal suggests a critical regulatory role of arachidonate reacylation that limits leukotriene biosynthesis in concert with 5-lipoxygenase and cytosolic phospholipase A(2)alpha activation.  相似文献   

2.
Isolated human polymorphonuclear leukocytes (PMNL) stimulated by platelet activating factor (PAF), leukotriene B(4) (LTB(4)) or opsonized zymosan (OZ) released adenosine measured by thermospray high performance liquid chromatography mass spectrometry in the cell-free supernatants. Stimulation by PAF or LTB(4) resulted in a bellshaped concentration-effect curve; 5 x 10(-7) M PAF, 10(-8) M LTB(4) and 500 mug ml(-1) OZ induced peak adenosine release, thus cytotoxic concentrations did not elevate adenosine level in the supernatants. Therefore adenosine release was characteristic of viable cells. As calculated from concentration-effect curves, the rank order of potency for adenosine release was PAF > LTB > OZ. These resuits suggest that adenosine, when bound specifically to membrane receptor sites, may initiate signal transduction, and, in co-operation with other inflammatory mediators, may modulate phagocyte function, e.g. production of chemoluminescence (CL).  相似文献   

3.
Leukotriene B4 (LTB4) is reported to exert its biological activity in neutrophils through the increase in cytosolic free calcium that follows binding to its specific receptor. Leukotriene B5 has been shown to be far less active than LTB4. Therefore we compared the capacity of LTB4 and LTB5 to stimulate the rise in cytosolic free calcium using fura-2-loaded human neutrophils, to assess the relationship between the calcium mobilizing activity and biological potency of LTB4 and LTB5. At any concentration tested, LTB5 was less active than LTB4 in increasing cytosolic free calcium. ED50 for LTB4 and LTB5 were 5 X 10(-10) M and 5 X 10(-9) M, respectively. The difference in the binding affinities of LTB4 and LTB5 to the LTB4 receptor has been reported to explain the difference in their biological activities. In the present study we further demonstrated that the calcium mobilizing activity of LTB4 and LTB5 also correlates the different biological activity of the two compounds.  相似文献   

4.
5.
The effect of the polyamine, spermidine, on formyl-methionyl-leucyl-phenylalanine stimulated hydrolysis of polyphosphoinositides was examined in purified human neutrophils by measurement of inositol phosphate production from radioactively labelled inositol. Spermidine inhibited formyl-methionyl-leucyl-phenylalanine stimulated inositol phosphate production by neutrophil in a dose dependent manner. Inhibition of formyl-methionyl-leucyl-phenylalanine stimulated inositol phosphate accumulation by spermidine was maximal at 10 microM and the IC50 value for this effect was 4.2 microM spermidine. This action of spermidine, thought to be mediated by a membrane component other than phospholipase C, may reflect a control mechanism modulating the response of the polyphosphoinositide system.  相似文献   

6.
Leukotriene B4 induced a biphasic change in the cytoplasmic pH of human neutrophils: an initial rapid acidification followed by an alkalinization. The acidification was slightly reduced by the removal of extracellular Ca2+, but the subsequent alkalinization was not. The leukotriene B4-induced alkalinization was dependent on extracellular Na+ and pH, and was inhibited by amiloride and its more potent analogue, 5-(N,N-hexamethylene)amiloride. These characteristics indicate that the cytoplasmic alkalinization is mediated by the Na+-H+ exchange. Oxidation products of leukotriene B4, 20-hydroxyleukotriene B4, 20-carboxyleukotriene B4, and (5S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) also stimulated the Na+-H+ exchange, but higher concentrations were required. Treatment of the cells with pertussis toxin inhibited both phases of the leukotriene B4-induced pHi change, while cholera toxin did not affect the pHi change. The alkalinization induced by leukotriene B4 was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, but was not inhibited by N-(2-guanidinoethyl)-5-isoquinolinesulfonamide which has a less inhibitory effect on protein kinase C. Acidification was not affected by the drugs. These findings suggest that a GTP-binding protein sensitive to pertussis toxin and protein kinase C are involved in the activation of the Na+-H+ exchange stimulated by leukotriene B4.  相似文献   

7.
Calcium (Ca2+) signals were monitored in individual neutrophils using ratio imaging of fura-2. In contrast to N-formyl-L-leucyl-L-phenylalanine (f-met-leu-phe), which produced grossly asynchronous Ca2+ signals with delays in response (up to 60 s), leukotriene B4 (LTB4) provoked synchronous and immediate elevations in cytosolic free Ca2+. Some individual neutrophils which responded immediately to LTB4, subsequently displayed delayed Ca2+ signals in response to f-met-leu-phe. A sub-population of neutrophils failed to respond to both LTB4 and f-met-leu-phe. The asynchrony of the Ca2+ signalling to f-met-leu-phe is not, therefore, an obligatory property of signal transduction in neutrophils.  相似文献   

8.
Abstract

Human polymorphonuclear leukocytes (PMNLs, neutrophils) play a major role in the immune response to bacterial and fungal infections and eliminate pathogens through phagocytosis. During phagocytosis of microorganisms, the 5-lipoxygenase (5-LOX) pathway is activated resulting in generation of leukotrienes, which mediate host defense. In this study, a library of oligodeoxyribonucleotides (ODNs) with varying numbers of human telomeric repeats (d(TTAGGG)n) and their analogues with phosphorothioate internucleotide linkages and single-nucleotide substitutions was designed. These ODNs with the potential to fold into G-quadruplex structures were studied from structural and functional perspectives. We showed that exogenous G-quadruplex-forming ODNs significantly enhanced 5-LOX metabolite formation in human neutrophils exposed to Salmonella Typhimurium bacteria. However, the activation of leukotriene synthesis was completely lost when G-quadruplex formation was prevented by substitution of guanosine with 7-deazaguanosine or adenosine residues at several positions. To our knowledge, this study is the first to demonstrate that G-quadruplex structures are potent regulators of 5-LOX product synthesis in human neutrophils in the presence of targets of phagocytosis.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
The effect of the cytoprotective bile acid tauroursodeoxycholic acid (TUDCA) on basal cytosolic free Ca++ (Ca++)i and receptor-mediated (Ca++)i increase was studied in human polymorphonuclear neutrophils using the fluorescent dye quin2. Basal levels of (Ca++)i were 96 +/- 6 nmol/l (mean +/- SEM, n = 48). TUDCA and its cytotoxic epimer taurochenodeoxycholic acid (TCDCA) at 500 mumols/l increased (Ca++)i by 31 +/- 12 and 27 +/- 7 nmol/l, respectively (n = 6, p less than 0.05). Stimulation of neutrophils with the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP; 10(-7) mol/l) induced a (Ca++)i increase of 200 +/- 32 nmol/l which was inhibited after preincubation with TUDCA (500 mumols/l) or TUDCA + TCDCA (500 mumols/l, each) by 60.1% and 59.5%, respectively, but not with TCDCA (500 mumols/l) alone. The inhibitory effect of TUDCA on FMLP-induced (Ca++)i increase was strongly concentration-dependent and was nearly complete at 1000 mumols/l. Since (Ca++)i is discussed as a mediator of cellular injury we hypothesize that TUDCA may exert its protective effects at least partly via inhibition of (Ca++)i-mediated cytotoxic processes.  相似文献   

10.
Leukotriene B4 stimulated a transient production of superoxide anions (O2-) by human polymorphonuclear leukocytes which continued for only about 1 min. The production was dependent on Ca2+ in the suspending medium and no production was observed without the addition of calcium. The concentrations of leukotriene B4 and calcium for the half-maximal production were about 1 microM and 200 microM, respectively. 8-(N,N,-Diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist, did not inhibit the O2- production stimulated by leukotriene B4 in the presence of calcium, while N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin inhibitor, did. When leukotriene B4 was added to the cells treated with cytochalasin B, the production of O2- was biphasic: an initial rapid phase, followed by a slow one. The slow phase was also dependent on Ca2+ concentrations but it could be induced even without the addition of Ca2+ to the medium. The cells treated with both cytochalasin B and TMB-8 in Ca2+-free medium showed a negligible production of superoxide on addition of leukotriene B4, but the production appeared upon addition of CaCl2. These findings suggest that the superoxide production stimulated by leukotriene B4 is associated with the influx of Ca2+.  相似文献   

11.
IL-4 inhibits the expression of IL-8 from stimulated human monocytes   总被引:19,自引:0,他引:19  
Peripheral blood monocytes are important mediators of inflammation via the generation of various bioactive substances, including the recently isolated and cloned chemotactic peptide IL-8. Through cytokine networking, monocyte-derived cytokines are capable of inducing IL-8 expression from non-immune cells. IL-4, a B and T lymphocyte stimulatory factor, has recently been shown to inhibit monocyte/macrophage function, including the ability to suppress monocyte-generated cytokines. We describe the in vitro inhibition of IL-8 gene expression and synthesis from LPS, TNF, and IL-1 stimulated peripheral blood monocytes by IL-4. IL-4 suppressed IL-8 production from stimulated monocytes in a dose-dependent fashion, with partial suppression observed at IL-4 concentrations as low as 10 pg/ml. The IL-4-induced suppressive effects were observed even when IL-4 was administered 2 h post-LPS-stimulation. The IL-4-induced inhibition of IL-8 mRNA expression was dependent on protein synthesis, as the suppressive effects of IL-4 were significantly negated by the addition of cycloheximide. Our findings suggest that IL-4 may be an important endogenous regulator of inflammatory cell recruitment, and adds further support to the potential role of IL-4 as a down-regulator of monocyte immune function.  相似文献   

12.
IL-18 expression and functional activity have been associated with a range of autoimmune diseases. However, the precise mechanism by which IL-18 induces such pathology remains unclear. In this study we provide direct evidence that IL-18 activates neutrophils via TNF-alpha induction, which drives the production of leukotriene B(4) (LTB(4)), which in turn leads to neutrophil accumulation and subsequent local inflammation. rIL-18 administered i.p. resulted in the local synthesis of LTB(4) and a rapid influx of neutrophils into the peritoneal cavity, which could be effectively blocked by the LTB(4) synthesis inhibitor MK-886 (MK) or its receptor antagonist CP-105,696. IL-18-induced neutrophils recruitment and LTB(4) production could also be blocked by a neutralizing anti-TNF-alpha Ab. In addition, IL-18 failed to induce neutrophil accumulation in vivo in TNFRp55(-/-) mice. In an IL-18-dependent murine collagen-induced arthritis model, administration of MK significantly inhibited disease severity and reduced articular inflammation and joint destruction. Furthermore, MK-886-treated mice also displayed suppressed proinflammatory cytokine production in response to type II collagen in vitro. Finally, we showed that IL-18-activated human peripheral blood neutrophils produced significant amounts of LTB(4) that were effectively blocked by the MK. Together, these findings provide a novel mechanism whereby IL-18 can promote inflammatory diseases.  相似文献   

13.
The N-formylated tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) initiated the generation of immunoreactive C-6 sulfidopeptide leukotrienes and of leukotriene B4 (LTB4) in a dose-dependent manner from monolayers of human monocytes pretreated for 10 min with 5 micrograms/ml of cytochalasin B. The EC50 for the immunoreactive C-6 sulfidopeptide leukotrienes was 10(-8) M FMLP and for immunoreactive LTB4 was 5 X 10(-8) M FMLP. The maximal response to FMLP occurred within 10 min, and the sum of the two classes of leukotrienes generated was about 1/6 that obtained from monocytes stimulated with calcium ionophore A23187. The requirement for cytochalasin B in order for FMLP, but not the calcium ionophore, to stimulate leukotriene generation is compatible with the ability of cytochalasin B to augment in other cells certain stimulus-specific transmembrane responses that are not dependent on the integrity of the cytoskeleton. Resolution by reverse phase high performance liquid chromatography of the products released from monocytes pretreated with cytochalasin B and stimulated with FMLP or calcium ionophore yielded a single peak of immunoreactive LTB4 eluting at the same retention time as the synthetic standard; immunoreactive C-6 sulfidopeptide leukotrienes eluted at the retention times of leukotriene C4 (LTC4) and leukotriene D4 (LTD4). [3H]LTB4 was not metabolically altered by monocytes pretreated with cytochalasin B and activated with FMLP in comparison with cells treated with buffer alone, whereas [3H]LTC4 was partially converted to [3H]LTD4. The leukotriene-generating response of monolayers of human monocytes pretreated with cytochalasin B to FMLP is receptor-mediated, as indicated by the inactivity of the structural analog N-acetyl-methionyl-leucyl-phenylalanine and by the capacity of the FMLP receptor antagonist carbobenzoxyphenylalanyl-methionine to inhibit the agonist action of FMLP in a dose-response fashion.  相似文献   

14.
Addition of glutathione S-transferase inhibitors, ethyacrynic acid (ET), caffeic acid (CA), and ferulic acid (FA) to human neutrophils led to inhibition of leukotriene C4 (LTC4) synthesis induced by calcium ionophore A23187. ET is the most specific of these inhibitors for it had little effect on LTB4, PGE2 and 5-HETE synthesis. The inhibition of LTC4 was irreversible and time dependent. ET also had little effect on 3H-AA release from A23187-stimulated neutrophils.  相似文献   

15.
The chemotactic factors f-Met-Leu-Phe, arachidonic acid and leukotriene B4 induce a rapid stimulation of both Ca2+ and Na+ influx in rabbit neutrophils. In the three cases the stimulation is rapid and the effects are not additive. Furthermore in all cases the stimulation of Na-influx but not of Ca-uptake is inhibited by the potassium-sparing diuretic amiloride. Preincubation with high concentrations of the chemotactic factor f-Met-Leu-Phe followed by washing of rabbit neutrophils reduces significantly the stimulation of calcium uptake induced by arachidonic acid, leukotriene B4 and f-Met-Leu-Phe. These results strongly suggest that the exogenous addition of arachidonic acid or of leukotriene B4 leads to the activation of the same permeation pathways as do better defined chemotactic factors.  相似文献   

16.
Platelet-activating factor, at a concentration of 10 microM, was capable of inducing leukotriene C4 synthesis by eosinophils of healthy donors, i.e. (3.1 +/- 0.3) x 10(6) molecules leukotriene C4/cell (n = 31, mean +/- SEM, cell purity 87 +/- 2%). Reversed-phase high performance liquid chromatography analysis demonstrated the exclusive synthesis of leukotriene C4. At a concentration of 1 microM, platelet-activating factor was capable of significantly enhancing the calcium ionophore A23187, the opsonized zymosan or the arachidonic acid induced leukotriene C4 synthesis by eosinophils. These results show that PAF is capable of inducing and enhancing the leukotriene C4 formation by human eosinophils.  相似文献   

17.
TNF-alpha enhances polymorphonuclear responses to many stimuli, including chemotactic peptide FMLP. It also promotes expression of FMLP receptors and thus may prime polymorphonuclear neutrophils to this and other agonists by up-regulating signal recognition molecules. However, we find that the cytokine's actions on FMLP receptors lagged priming of FMLP-induced degranulation. Moreover, TNF-alpha enhanced degranulation responses to leukotriene B4 and platelet-activating factor but paradoxically down-regulated leukotriene B4 receptors and only transiently up-regulated platelet-activating factor receptors. Hence, TNF-alpha has pleiotropic effects on receptor expression; these effects diverge from priming; and a large part of the primed state must reflect enhancement of post-receptor events.  相似文献   

18.
Bacterial DNA containing unmethylated CpG motifs is emerging as an important regulator of functions of human neutrophil granulocytes (polymorphonuclear leukocytes (PMN)). These motifs are recognized by TLR-9. Recent studies indicate that peroxynitrite (ONOO-) may function as an intracellular signal for the production of IL-8, one of the key regulators of leukocyte trafficking in inflammation. In this study we investigated whether bacterial DNA (CpG-DNA) could induce ONOO- signaling in human PMN. Human whole blood, isolated PMN (purity, >95%), and high purity (>99%) PMN respond to CpG-DNA, but not to calf thymus DNA, with secretion of IL-8 and, to a lesser extent, IL-6 and TNF. Methylation of cytosines in CpG-DNA resulted in a complete loss of activity. The endosomal acidification inhibitors, bafilomycin A and chloroquine, inhibited CpG-DNA-induced cytokine release from PMN. CpG-DNA-induced IL-8 mRNA expression and release was also blocked by the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester. CpG-DNA evoked concomitant increases in intracellular superoxide and NO levels, leading to enhanced ONOO- formation and, consequently, nuclear accumulation of c-Fos and NF-kappaB. Pharmacological inhibition of NF-kappaB activation attenuated approximately 75% of CpG-DNA-evoked IL-8 release. These results identify ONOO- -dependent activation of NF-kappaB and c-Fos as an important mechanism that mediates PMN responses, including IL-8 gene expression and release, to bacterial DNA and unmethylated CpG motifs in particular. Enhanced ONOO- formation represents a mechanism by which bacterial DNA may contribute to prolongation and amplification of the inflammatory response.  相似文献   

19.
The sonicate of human neutrophils converted leukotriene B4 to a polar product in aerobic condition in the presence of NADPH at a rate comparable to that of the intact cells. NADH could scarcely replace NADPH. The conversion was not observed in anaerobic conditions and was inhibited by carbon monoxide (CO/O2 = 4/1) or by 1 mM p-chlormercuribenzoate, while it was not affected by 1 mM KCN, 5 mM NaN3, 200 micrograms/ml catalase, 100 mM mannitol, and 10 micrograms/ml superoxide dismutase. These observations suggest that the myeloperoxidase-H2O2-halide system and active oxygen species are not involved in the reaction. The activity was observed in the 100,000xg supernatant from the homogenate, in which cytochrome P-450 was not detected.  相似文献   

20.
The chemotactic activity of leukotriene B4 (5S, 12R Dihydroxy 6, 14 cis, 8, 10 trans eicosatetraenoic acid) (LTB4) was examined by using a sensitive Boyden-chamber assay. The activity of LTB4 was compared to other biosynthetic stereoisomers: 5S, 12R Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (6-trans LTB4); 5S, 12S Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (12-epi-6-trans LTB4), 5S, 12S DiHETE; the metabolic product 20-Hydroxy LTB4 (20-OH LTB4); methylated LTB4 (Methyl-LTB4), and the related monoHETE 5-HETE and 12-HETE. The compounds were purified by several steps of reverse phase and straight phase HPLC. The LTB4 exhibits measurable chemotactic activity at 10(-9) M with maximal activity at 10(-7) M and an ED50 of 10(-8) M. The LTB4 isomers and monoHETE were less chemotactic than previously reported. The monoHETE (5-HETE and 12-HETE), the isomer 12-epi-6-trans LTB4, and 5S, 12S DiHETE fail to attract neutrophils at levels between 10(-6) and 10(-5) M. If these compounds are chemotactic, then activity is at least four orders of magnitude less than that of LTB4. The isomer 6-trans LTB4 at 10(-6) to 10(-5) M induced chemotaxis with an extrapolated ED50 value of 10(-5) M, indicating that a trans for cis change in configuration at position 6 reduces the chemotactic activity of LTB4 by 1000-fold. Conversely, the metabolic product 20-OH LTB4 is at least as active as the native compound LTB4. Methylation of the carboxyl group of LTB4 reduces its chemotactic activity by two orders of magnitude. These results indicate a high degree of stereospecificity for the LTB4 receptor with strict dependence on hydroxyl group, and triene configuration and considerable dependence on the carboxyl group. Modification at the aliphatic omega end of the LTB4 molecule has a minimal effect on function, suggesting that the hydrophobicity of this portion of the molecule is not important for optimal activity. Furthermore, we propose that metabolic products of LTB4 may be of greater importance than LTB4 as physiologic inflammatory mediators in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号