首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
沙地土壤种植杨树-刺槐混交林后持水特性变化的研究   总被引:6,自引:0,他引:6  
通过对比法研究了沙地土壤种杨树刺槐混交林后持水特性的变化。结果表明,沙地土壤种植杨树,刺槐纯林和混交林后,土壤持水特性,孔隙分布状况和水容量得到了改善和提高,提高和改善的幅度均以混交林最大,无林地植被覆盖后土壤持水性能改善的根本原因在于土壤有机质含量的增加,从而改善了土壤的孔隙状况。  相似文献   

2.
三叶草根间菌丝桥传递衰亡根系中磷的作用   总被引:9,自引:0,他引:9  
应用五室方法研究了三叶草根间菌线桥传递衰亡根系中磷的作用。三叶草生长至10周切除供体地上部让根系衰亡,11周收收获样品进行分析测定。结果表明:菌线桥可以在植株间传递^32P,从而使受体三叶草地上部磷营养状况得到改善;供体植株地上部切除后有利于^32P通过菌丝桥从衰亡根系向受体植株的转移,表现为受体植株含磷量有所增加,但对植株的生长影响不大。  相似文献   

3.
徐冰  冯固  潘家荣  秦岭  李晓林 《生态学报》2003,23(4):765-770
采用^32P示踪和4室根箱方法研究了外生菌根菌丝桥对板栗磷营养和植株间磷素传递作用的效应。给一株板栗幼苗(供体)接种外生菌根真菌美味牛肝菌(Boletus edulis)、褐环乳牛肝菌(Suillus luteus),菌根真菌在侵染供体植物以后其根外菌丝继续生长并侵染邻近的另外一株板栗植株(受体)。同位素示踪试验表明,供体板栗体内的^32P可通过菌丝桥传递给受体板栗,受体植株不仅根中^32P放射性强度高于对照,而且茎中^32P强度也显著高于对照。说明外生菌根真菌在不同板栗植株间形成了菌丝桥,但是菌丝桥传递的磷的数量很有限,仅占供体植株体内总磷量的5%-8%。美味牛肝菌和褐环乳牛肝菌侵染供体板栗植株以后,使植株含磷量、总吸磷量和生物量较对照明显增加。受体板栗幼苗在菌丝桥建立以后其植株含磷量和总吸磷量显著高于对照,但生物量与对照没有显著差别。  相似文献   

4.
丛枝菌根真菌对刺槐幼苗机械损伤响应机制的初步研究   总被引:1,自引:0,他引:1  
李朕  胡文涛  唐明 《西北植物学报》2015,35(7):1437-1442
通过对刺槐幼苗每隔3d剪去1片叶片造成持续机械损伤,测定了0~138h抗氧化酶活性变化及刺槐幼苗生长情况;同时使用孔径25μm尼龙网设置三室根箱隔网系统,测定了供体瞬时机械损伤后受体的抗氧化酶活性的持续变化,探讨接种丛枝菌根真菌刺槐幼苗对持续及瞬时机械损伤后的响应机制,以及菌根菌丝桥对刺槐幼苗机械损伤信号的传递特征。结果表明:在持续机械损伤胁迫下,接种丛枝菌根真菌能够促进刺槐幼苗的根系生长、提高幼苗的成活率,接种丛枝菌根真菌的刺槐幼苗成活率及根系鲜重比对照分别增加15.38%和23.52%。瞬时机械损伤后0、48、90、114、138h刺槐幼苗的苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)活性都呈现先增加后降低的趋势,均在90h达到最大值,并且菌根化幼苗的PAL和POD活性显著高于未菌根化幼苗。瞬时机械损伤后,菌根菌丝桥能够介导刺槐幼苗间相关信号的传递,从而引起菌根化受体刺槐幼苗的PAL和POD活性表现出与供体机械损伤幼苗相同的变化趋势。  相似文献   

5.
三叶草体内磷通过菌丝桥向黑麦草的传递研究   总被引:11,自引:3,他引:11  
应用5室分隔法研究了供体三叶草体内的32P通过菌丝桥向受体黑麦草的传递作用。结果表明,菌根侵染供体三叶草根系之后,根外菌丝可穿过中室到达受体植株根室而再度侵染受体黑麦草的根系,从而形成三叶草-黑麦草根系之间的菌丝桥;供体三叶草体内的32P可通过根间菌丝桥传递给受体黑麦草,32P的传递量随受体植株施磷水平的提高而降低.  相似文献   

6.
杨树刺槐混交林及纯林枯落叶分解   总被引:17,自引:0,他引:17  
研究了杨树(Populusspp.)、刺槐(Robiniapseudoacacia)纯林及混交林枯落叶一年中的分解及养分动态变化规律.结果表明,杨树枯落叶分解速度较慢,刺槐较快,而混交林则较杨树有较大提高.在分解过程中,杨树枯落叶N、P释放困难,需经过长达10个月的养分富积过程;刺槐枯落叶N、P元素释放较为容易;混交林枯落叶养分富积时间缩短、幅度下降,分解速度加快,说明杨树和刺槐混交有利于枯落叶分解和N、P循环.  相似文献   

7.
黑土开垦后水稳性团聚体与土壤养分的关系   总被引:15,自引:3,他引:15  
研究了黑土开垦后水稳性团聚体变化规律及其与土壤养分状况的关系.结果表明,黑土开垦初期,水稳性团聚体的含量迅速下降.在开垦的第一个10年,水稳性团聚体下降约10%;随着开垦时间的延长,其下降幅度趋缓,第10年~第50年,水稳性团聚体仅下降10%,之后下降幅度更加缓慢,接近一个稳定的水平.黑土中>0.25mm水稳性团聚体与土壤的有机碳、全氮、全磷和CEC具有良好的相关性,相关系数分别为0.7625、0.6794、0.6084和0.8134,均达到极显著水平;与交换性钙、交换性镁、交换性钾和交换性钠的相关性也达到极显著水平;在回归关系中,与有机碳和CEC之间的关系更密切,与全钾、速效磷、速效K和缓效K没有明显的相关性.要保持黑土良好的结构状况,土壤有机碳变化应处于平衡状态。  相似文献   

8.
Nodulation abilities of bacteria in the subclasses Gammaproteobacteria and Betaproteobacteria on black locust (Robinia pseudoacacia) were tested. Pseudomonas sp., Burkholderia sp., Klebsiella sp., and Paenibacillus sp. were isolated from surface-sterilized black locust nodules, but their nodulation ability is unknown. The aims of this study were to determine if these bacteria are symbiotic. The species and genera of the strains were determined by RFLP analysis and DNA sequencing of 16S rRNA gene. Inoculation tests and histological studies revealed that Pseudomonas sp. and Burkholderia sp. formed nodules on black locust and also developed differentiated nodule tissue. Furthermore, a phylogenetic analysis of nodA and a BLASTN analysis of the nodC, nifH, and nifHD genes revealed that these symbiotic genes of Pseudomonas sp. and Burkholderia sp. have high similarities with those of rhizobial species, indicating that the strains acquired the symbiotic genes from rhizobial species in the soil. Therefore, in an actual rhizosphere, bacterial diversity of nodulating legumes may be broader than expected in the Alpha-, Beta-, and Gammaproteobacteria subclasses. The results indicate the importance of horizontal gene transfer for establishing symbiotic interactions in the rhizosphere.  相似文献   

9.
Leaf morphological, physiological and biochemical characteristics of Robinia pseudoacacia L. seedlings were studied under different stress conditions. The plants were subjected to drought and shade stress for one month. Leaf inclination, chlorophyll fluorescence and chlorophyll content were measured at the first day (short-term stress) and at the end of the stress period (long-term stress) and in the recovery period. Leaf inclination was affected mainly by light; a low level of irradiance caused leaves to be arranged horizontally. Diurnal rhythmicity was lost after the long-term stress, but resumed, in part, in the recovery period. Drought stress caused leaves to tilt more obviously and decreased damage to the photosystem. Sun avoiding movement in a single leaf and sun tracking movement in the whole plant coexisted. Significant physiological changes occurred under different conditions of light. Increased energy dissipation and light capture were the main responses to high and low level of irradiance, respectively, and these were reflected by changes of chlorophyll fluorescence and chlorophyll content. Phenotypic plasticity in the leaflet enhanced the protective response to stress. These adaptive mechanisms may explain better survival of R. pseudoacacia seedlings in the understory, especially during the drought periods, and made it to be the preponderant reforestation species in Shandong Province of China.  相似文献   

10.
D. M. Eissenstat 《Oecologia》1990,82(3):342-347
Summary This study has two objections: (1) to compare transfers of phosphorus (32P) with nitrogen (15N) from undefoliated and defoliated mycorrhizal P-rich plants to an adjacent mycorrhizal plant and (2) to determine whether the improved nutrient status of a plant growing with a nutrient-rich plant is due primarily to movement of nutrients from roots of its nutrient-rich neighbor (= nutrient transfer) or to reduced nutrient uptake by its nutrient-rich neighbor (=shift in competition). Two plants of Plantago lanceolata were grown in a three-pot unit in which each of their root systems were split, with part in the central shared pot and part by themselves in an outside pot. There were three treatments: (1) no added P; (2) P added in the outer pot to only plant, termed the donor plant, since it might provide P to the companion plant, acting as a receiver; and (3) as in the previous treatment but the P-fertilized donor plant was also clipped. To encourage the formation of hyphal links between roots of the different plants, transfers were determined when root length densities were high (90 to 130 cm cm-3 soil) and when 56 to 85% of the root length was infected with vesicular-arbuscular mycorrhizae. Phosphorus fertilization enhanced P but not N movement within donor plants. Regardless of treatment, N transfer from donor to receiver plants was an order of magnitude greater than P transfer and in amounts that could potentially affect plant nutrition in very infertile soils. Phosphorus transfer was very small in any of the treatments. Although P fertilization and clipping improved P status of receiver plants, P transfer was not indicated as the main reason for the improved nutrition. A shift in competition between donor and receiver plants was likely the major factor in the shift in nutrition of the receiver plants.  相似文献   

11.
B. Coté  C. Camire 《Plant and Soil》1984,78(1-2):209-220
Summary Growth and N accumulation were assessed in pure and mixed plantings (2 years old) of hybrid poplar and black alder in southern Québec. Symbiotic dinitrogen fixation was evaluated by natural15N dilution. Growth of hybrid poplar plants and N accumulation in their tissues increased with their decreasing contribution to species ratio whereas no differences among treatments were measured for black alder. Yield and N content per hectare of aboveground components increased with the proportion of black alder in the plantation. Symbiotic dinitrogen fixation was estimated at 68% of alder nitrogen in both pure and mixed treatments. The maximum rate of N-fixation was 53kg ha–1 yr–1 in pure alder plots. The amount of nitrogen accumulated in entire plants of black alder from symbiotic fixation could be sufficient to balance the N export in harvested stems and branches of short-rotation plantations containing at least 33% of alder.  相似文献   

12.
Plants cover their need for sulfur by taking up inorganic sulfate, reducing it to sulfide, and incorporating it into the amino acid cysteine. In herbaceous plants the pathway of assimilatory sulfate reduction is highly regulated by the availability of the nutrients sulfate and nitrate. To investigate the regulation of sulfate assimilation in deciduous trees we used the poplar hybrid Populus tremula × P. alba as a model. The enzymes of the pathway are present in several isoforms, except for sulfite reductase and -glutamylcysteine synthetase; the genomic organization of the pathway is thus similar to herbaceous plants. The mRNA level of APS reductase, the key enzyme of the pathway, was induced by 3 days of sulfur deficiency and reduced by nitrogen deficiency in the roots, whereas in the leaves it was affected only by the withdrawal of nitrogen. When both nutrients were absent, the mRNA levels did not differ from those in control plants. Four weeks of sulfur deficiency did not affect growth of the poplar plants, but the content of glutathione, the most abundant low molecular thiol, was reduced compared to control plants. Sulfur limitation resulted in an increase in mRNA levels of ATP sulfurylase, APS reductase, and sulfite reductase, probably as an adaptation mechanism to increase the efficiency of the sulfate assimilation pathway. Altogether, although distinct differences were found, e.g. no effect of sulfate deficiency on APR in poplar leaves, the regulation of sulfate assimilation by nutrient availability observed in poplar was similar to the regulation described for herbaceous plants.  相似文献   

13.
Here we describe a simple method for pulse-labeling tree seedlings with 13CO2(gas), and then apply the method in two related experiments: t (i) comparison of carbon allocation patterns between t Betula papyrifera Marsh. and t Pseudotsuga menziesii (Mirb.) Franco, and t (ii) measurement of one-way belowground carbon transfer from t B. papyrifera to t P. menziesii. Intraspecific carbon allocation patterns and interspecific carbon transfer both influence resource allocation, and consequently development, in mixed communities of t B. papyrifera and t P. menziesii.In preparation for the two experiments, we first identified the appropriate 13CO2(gas) pulse-chase regime for labeling seedlings: a range of pulse (100-mL and 200-mL 99 atom%13 CO2(gas)) and chase (0, 3 and 6 d) treatments were applied to one year-old t B. papyrifera and t P. menziesii seedlings. The amount of 13CO2 fixed immediately after 1.5 h exposure was greatest for both t B. papyrifera (40.8 mg excess 13C) and t P. menziesii (22.9 mg excess 13C) with the 200-mL pulse, but higher 13C loss and high sample variability resulted in little difference in excess13 C content between pulse treatments after 3 d for either species. The average excess 13C root/shoot ratio of t B. papyrifera and t P. menziesii changed from 0.00 immediately following the pulse to 0.61 and 0.87 three and six days later, which reflected translocation of 75% of fixed isotope out of foliage within 3 d following the pulse and continued enrichment in fine roots over 6 d. Based on these results, the 100-mL CO2(gas) and 6-d chase were considered appropriate for the carbon allocation and belowground transfer experiments.In the carbon allocation experiment, we found after 6 d that t B. papyrifera allocated 49% (average 9.5 mg) and t P. menziesii 41% (average 5.8 mg) of fixed isotope to roots, of which over 55% occurred in fine roots in both species. Species differences in isotope allocation patterns paralleled differences in tissue biomass distribution. The greater pulse labeling efficiency of t B. papyrifera compared to t P. menziesii was associated with its two-fold and 13- fold greater leaf and whole seedling net photosynthetic rates, respectively, 53% greater biomass, and 35% greater root/shoot ratio.For the carbon transfer experiment, t B. papyrifera and t P. menziesii were grown together in laboratory rootboxes, with their roots intimately mingled. A pulse of 100 mL13 CO2(gas) was applied to paper birch and one-way transfer to neighboring t P. menziesii was measured after 6 d. Of the excess 13C fixed by t B. papyrifera, 4.7% was transferred to neighboring t P. menziesii, which distributed the isotope evenly between roots and shoots. Of the isotope received by t P. menziesii, we estimated that 93% was taken up through belowground pathways, and the remaining 7% taken up by foliage as13 CO2(gas) respired by t B. papyrifera shoots. These two experiments indicate that t B. papyrifera fixes more total carbon and allocates a greater proportion to its root system than does t P. menziesii, giving it a competitive edge in resource gathering; however, below-ground carbon sharing is of sufficient magnitude that it may help ensure co-existence of the two species in mixed communities.  相似文献   

14.
选用南方草地土壤——山地黄棕壤进行盆栽试验,研究了氮锌复合作用对混播系统白三叶生长、根瘤发育、固氮及固氮产物转移的影响。结果表明,氮锌复合作用对白三叶生长、根瘤发育、固氮及氮转移在白三叶不同生长阶段、不同氮锌施用范围表现出不同的效应。生长前期氮锌复合作用对白三叶茎叶及根系产量的协同效应表现在氮0-30mg/kg、锌0-6mg/kg的范围内,而生长后期协同范围扩大到氮0-90mg/kg与锌0-20mg/kg的不同组合处理中;在高于上述氮锌施用范围,氮锌之间表现为拮抗效应。与不施氮相比较,施氮显著降低了白三叶根瘤数量及生长前期固氮百分数,但适量施氮(30mg/kg)显著增加了白三叶根瘤重量及生长后期固氮百分数。在所有施氮水平中,施锌6mg/kg显著增加了根瘤数量、根瘤重量及固氮百分数。与茎叶及根系生长氮锌协同范围相比较,氮锌对根瘤发育与固氮作用的协同范围较小。固氮产物转移与白三叶根瘤衰败有密切相关。试验为我国南方牧场科学施肥提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号