首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
3.
GRIP domain proteins are a class of golgins that have been described in yeast and animals. They locate to the trans-Golgi network and are thought to play a role in endosome-to-Golgi trafficking. The Arabidopsis GRIP domain protein, AtGRIP, fused to the green fluorescent protein (GFP), locates to Golgi stacks but does not exactly co-locate with the Golgi marker sialyl transferase (ST)-mRFP, nor with the t-SNAREs Memb11, SYP31 and BS14a. We conclude that the location of AtGRIP is further to the trans side of the stack than STtmd-mRFP. The 185-aa C-terminus of AtGRIP containing the GRIP domain targeted GFP to the Golgi, although a proportion of the fusion protein was still found in the cytosol. Mutation of a conserved tyrosine (Y717) to alanine in the GRIP domain disrupted Golgi localization. ARL1 is a small GTPase required for Golgi targeting of GRIP domain proteins in other systems. An Arabidopsis ARL1 homologue was isolated and shown to target to Golgi stacks. The GDP-restricted mutant of ARL1, AtARL1-T31N, was observed to locate partially to the cytosol, whereas the GTP-restricted mutant AtARL1-Q71L labelled the Golgi and a population of small structures. Increasing the levels of AtARL1 in epidermal cells increased the proportion of GRIP-GFP fusion protein on Golgi stacks. We show, moreover, that AtARL1 interacted with the GRIP domain in a GTP-dependent manner in vitro in affinity chromatography and in the yeast two-hybrid system. This indicates that AtGRIP and AtARL1 interact directly. We conclude that the pathway involving ARL1 and GRIP domain golgins is conserved in plants.  相似文献   

4.
5.
The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.  相似文献   

6.
7.
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain‐containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine‐ and histidine‐rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre‐vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 – a member of the SNARE vesicle‐associated protein family and previously related to a sterol‐binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.  相似文献   

8.
WD40/BEACH domain proteins have been implicated in membrane trafficking and membrane composition events in Dictyostelium and Drosophila . In this paper, we show that the Arabidopsis SPIRRIG ( SPI ) gene encodes a WD40/BEACH domain protein. The cellular analysis revealed fragmented vacuoles in root hairs similar to those found in the corresponding Dictyostelium mutants, suggesting a related cellular function. The phenotypic analysis revealed that spi mutants share all phenotypic aspects of mutants in the actin polymerization-regulating ARP2/3 pathway, including distorted trichomes, less lobing of epidermal pavement cells, disconnected epidermal cells on various organs, and shorter root hairs. This complete phenotypic overlap suggests that this WD40/BEACH domain protein and the actin-regulating ARP2/3 pathway are involved in similar growth processes.  相似文献   

9.
10.
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post‐translationally modified by the attachment of N‐glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex‐type N‐glycans, which are located in the N‐terminal ‘PA domain’, the central region and the C‐terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N‐glycans do not affect the targeting of AtVSR1 to pre‐vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N‐glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N‐glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.  相似文献   

11.
12.
13.
The mutants irt1-1 and irt1-2 of Arabidopsis thaliana were identified among a collection of T-DNA-tagged lines on the basis of a decrease in the effective quantum yield of photosystem II. The mutations responsible interfere with expression of IRT1, a nuclear gene that encodes the metal ion transporter IRT1. In irt1 mutants, photosensitivity and chlorophyll fluorescence parameters, as well as abundance and composition of the photosynthetic apparatus, are significantly altered. Additional effects of the mutation under greenhouse conditions, including chlorosis and a drastic reduction in growth rate and fertility, are compatible with a deficiency in iron transport. Propagation of irt1 plants on media supplemented with additional quantities of iron salts restores almost all aspects of wild-type behaviour. The irt2-1 mutant, which carries an En insertion in the highly homologous IRT2 gene of Arabidopsis thaliana, was identified by reverse genetics and shows no symptoms of iron deficiency. This, together with the finding that irt1-1 can be complemented by 35S::IRT1 but not by 35S::IRT2, demonstrates that, although the products of the two genes are closely related, only AtIRT1 is required for iron homeostasis under physiological conditions.  相似文献   

14.
Schmidt R  Stransky H  Koch W 《Planta》2007,226(4):805-813
The development of seeds depends on the import of carbohydrates and amino acids supplied by the maternal tissue via the phloem. Several amino acid transporters have been reported to be expressed during seed and silique development in Arabidopsis thaliana (L.) Heynh. Here we show that mutants lacking the high affinity amino acid permease 8 (At1g10010) display a severe seed phenotype. The overall number of seeds and the number of normally developed seed is reduced by ∼50% in siliques of the Ataap8 T-DNA insertion mutant. This result could be reproduced in plants where expression of AtAAP8 is targeted with an RNAi approach. The seed phenotype is correlated with a specifically altered amino acid composition of young siliques. Aspartic acid and glutamic acid are significantly reduced in young siliques of the mutants. In correlation with the fact that AAP8 is a high affinity transporter for acidic amino acids, translocation of 14C-labelled aspartate fed via the root system to seeds of the mutants is reduced. AAP8 plays a crucial role for the uptake of amino acids into the endosperm and supplying the developing embryo with amino acids during early embryogenesis.  相似文献   

15.
Huesgen PF  Schuhmann H  Adamska I 《FEBS letters》2006,580(30):6929-6932
In plants exposed to high irradiances of visible light, the D1 protein in the reaction center of photosystem II is oxidatively damaged and rapidly degraded. Earlier work in our laboratory showed that the serine protease Deg2 performs the primary cleavage of photodamaged D1 protein in vitro. Here, we demonstrate that the rate of D1 protein degradation under light stress conditions in Arabidopsis mutants lacking the Deg2 protease is similar to those in wild-type plants. Therefore, we propose that several redundant D1 protein degradation pathways might exist in vivo.  相似文献   

16.
17.
Plant mitochondrial genomes exist in a natural state of heteroplasmy, in which substoichiometric levels of alternative mitochondrial DNA (mtDNA) molecules coexist with the main genome. These subgenomes either replicate autonomously or are created by infrequent recombination events. We found that Arabidopsis thaliana OSB1 (for Organellar Single-stranded DNA Binding protein1) is required for correct stoichiometric mtDNA transmission. OSB1 is part of a family of plant-specific DNA binding proteins that are characterized by a novel motif that is required for single-stranded DNA binding. The OSB1 protein is targeted to mitochondria, and promoter-beta-glucuronidase fusion showed that the gene is expressed in budding lateral roots, mature pollen, and the embryo sac of unfertilized ovules. OSB1 T-DNA insertion mutants accumulate mtDNA homologous recombination products and develop phenotypes of leaf variegation and distortion. The mtDNA rearrangements occur in two steps: first, homozygous mutants accumulate subgenomic levels of homologous recombination products; second, in subsequent generations, one of the recombination products becomes predominant. After the second step, the process is no longer reversible by backcrossing. Thus, OSB1 participates in controlling the stoichiometry of alternative mtDNA forms generated by recombination. This regulation could take place in gametophytic tissues to ensure the transmission of a functional mitochondrial genome.  相似文献   

18.
Pod shattering is an agronomical trait that is a result of the coordinated action of cell differentiation and separation. In Arabidopsis, pod shattering is controlled by a complex genetic network in which ALCATRAZ (ALC), a member of the basic helix-loop-helix family, is critical for cell separation during fruit dehiscence. Herein, we report the identification of ALC-INTERACTiNG PROTEIN1 (ACI1) via the yeast two-hybrid screen. ACI1 encodes a nuclear protein with a lysine-rich domain and a C-terminal serine-rich domain. ACI1 is mainly expressed in the vascular system throughout the plant and mesocarp of the valve in siliques. Our data showed that ACI1 interacts strongly with the N-terminal portion of ALC in yeast cells and in plant cells in the nucleus as demonstrated by bimolecular fluorescence complementation assay. Both ACl1 and ALC share an overlapping expression pattern, suggesting that they likely function together in planta. However, no detectable phenotype was found in plants with reduced ACI1 expression by RNA interference technology, suggesting that ACI1 may be redundant. Taken together, these data indicate that ALC may interact with ACll and its homologs to control cell separation during fruit dehiscence in Arabidopsis.  相似文献   

19.
Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β, as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits. Furthermore, both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.  相似文献   

20.
The WAG1 and WAG2 genes of Arabidopsis thaliana encode protein-serine/threonine kinases that are closely related to PINOID. In order to determine what roles WAG1 and WAG2 play in seedling development, we used a reverse genetics approach to study the wag1, wag2 and wag1/wag2 mutant phenotypes for clues. Although the wag mutants do not contain detectable amounts of the corresponding mRNA, they are wild type in most respects. However, wag1/wag2 double mutants exhibit a pronounced wavy root phenotype when grown vertically on agar plates, a phenotype observed in wild-type plants only on plates inclined to angles less than 90 degrees. The wag1 and wag2 mutants also demonstrate enhanced root waving, but to a lesser extent. Moreover, the double mutant roots are more resistant to the effects of N-1-naphthylphthalamic acid on the inhibition of root curling, raising the possibility that transport of auxin is affected in the wag mutants. Promoter fusions to the gusA reporter gene demonstrate that the WAG promoters are most active in root tips, consistent with the observed phenotypes in the wag mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号