首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The G protein-coupled sst2 somatostatin receptor is a critical negative regulator of cell proliferation. sstII prevents growth factor-induced cell proliferation through activation of the tyrosine phosphatase SHP-1 leading to induction of the cyclin-dependent kinase inhibitor p27Kip1. Here, we investigate the signaling molecules linking sst2 to p27Kip1. In Chinese hamster ovary-DG-44 cells stably expressing sst2 (CHO/sst2), the somatostatin analogue RC-160 transiently stimulates ERK2 activity and potentiates insulin-stimulated ERK2 activity. RC-160 also stimulates ERK2 activity in pancreatic acini isolated from normal mice, which endogenously express sst2, but has no effect in pancreatic acini derived from sst2 knock-out mice. RC-160-induced p27Kip1 up-regulation and inhibition of insulin-dependent cell proliferation are both prevented by pretreatment of CHO/sst2 cells with the MEK1/2 inhibitor PD98059. In addition, using dominant negative mutants, we show that sst2-mediated ERK2 stimulation is dependent on the pertussis toxin-sensitive Gi/o protein, the tyrosine kinase Src, both small G proteins Ras and Rap1, and the MEK kinase B-Raf but is independent of Raf-1. Phosphatidylinositol 3-kinase (PI3K) and both tyrosine phosphatases, SHP-1 and SHP-2, are required upstream of Ras and Rap1. Taken together, our results identify a novel mechanism whereby a Gi/o protein-coupled receptor inhibits cell proliferation by stimulating ERK signaling via a SHP-1-SHP-2-PI3K/Ras-Rap1/B-Raf/MEK pathway.  相似文献   

2.
Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation.  相似文献   

3.
Abstract: Fibroblast growth factors (FGFs) are not only mitogens, but they also promote the differentiation of various cell types. For instance, basic FGF (bFGF) provides a critical trophic support for hippocampal neurons in culture. To elicit their biological effects, FGFs interact with high-affinity receptors that are transmembrane proteins with a cytoplasmic portion containing a tyrosine kinase activity. The tyrosine phosphorylation pattern was examined in primary cultures of hippocampal neurons derived from rat embryos. In these cultures grown for 3 days in the absence of serum, the addition of bFGF causes a rapid increase of tyrosine phosphorylation for various proteins with an optimal level after 5 min of bFGF exposure. Concomitantly, bFGF activates mitogen-activated protein kinase (MAP kinase) activity measured with a selective MAP kinase peptide. The activity increased rapidly after the addition of bFGF and remained elevated even when cultures were treated for 1 h with bFGF. Both acidic and basic FGF were able to enhance protein tyrosine phosphorylation and MAP kinase activity, whereas nerve growth factor and epidermal growth factor did not elicit any of these responses. These data indicate that some of the transduction signals (i.e., tyrosine phosphorylation and activation of MAP kinase) that have been described for the proliferative effect of FGFs are also involved when FGFs act as trophic factors for postmitotic neurons in culture.  相似文献   

4.
Focal adhesion complexes are actin-rich, cytoskeletal structures that mediate cell adhesion to the substratum and also selectively regulate signal transduction pathways required for interleukin (IL)-1beta signaling to the MAP kinase, ERK. IL-1-induced ERK activation is markedly diminished in fibroblasts deprived of focal adhesions whereas activation of p38 and JNK is unaffected. While IL-1 signaling is known to involve the activity of protein and lipid kinases including MAP kinases, FAK, and PI3K, little is known about the role of phosphatases in the regulation of IL-1 signal generation and attenuation. Here we demonstrate that SHP-2, a protein tyrosine phosphatase present in focal adhesions, modulates IL-1-induced ERK activation and the transient actin stress fiber disorganization that occurs following IL-1 treatment in human gingival fibroblasts. Using a combination of immunoblotting, immunoprecipitation, and immunostaining we show that SHP-2 is present in nascent focal adhesions and undergoes phosphorylation on tyrosine 542 in response to IL-1 stimulation. Blocking anti-SHP-2 antibodies, electoporated into the cytosol of fibroblasts, inhibited IL-1-induced ERK activation, actin filament assembly, and cell contraction, indicating a role for SHP-2 in these processes. In summary, our data indicate that SHP-2, a focal adhesion-associated protein, participates in IL-1-induced ERK activation likely via an adaptor function.  相似文献   

5.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

6.
Angiotensin II (Ang II) binds to specific G protein-coupled receptors and is mitogenic in Chinese hamster ovary (CHO) cells stably expressing a rat vascular angiotensin II type 1A receptor (CHO-AT(1A)). Cyclin D1 protein expression is regulated by mitogens, and its assembly with the cyclin-dependent kinases induces phosphorylation of the retinoblastoma protein pRb, a critical step in G(1) to S phase cell cycle progression contributing to the proliferative responses. In the present study, we found that in CHO-AT(1A) cells, Ang II induced a rapid and reversible tyrosine phosphorylation of various intracellular proteins including the protein-tyrosine phosphatase SHP-2. Ang II also induced cyclin D1 protein expression in a phosphatidylinositol 3-kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)-dependent manner. Using a pharmacological and a co-transfection approach, we found that p21(ras), Raf-1, phosphatidylinositol 3-kinase and also the catalytic activity of SHP-2 and its Src homology 2 domains are required for cyclin D1 promoter/reporter gene activation by Ang II through the regulation of MAPK/ERK activity. Our findings suggest for the first time that SHP-2 could play an important role in the regulation of a gene involved in the control of cell cycle progression resulting from stimulation of a G protein-coupled receptor independently of epidermal growth factor receptor transactivation.  相似文献   

7.
The receptor-like phosphotyrosine phosphatase eta (PTPeta) is an important intracellular effector of the cytostatic action of SST. Here we characterize, in Chinese hamster ovary-k1 cells, the intracellular pathway that from somatostatin receptor 1 (SSTR1), leads to the activation of PTPeta and that involves, in a multimeric complex and sequential activation, the tyrosine kinases Janus kinase (JAK) 2 and Src, and the cytosolic phosphotyrosine phosphatase SHP-2. We show that inhibitors of JAK2 and Src and dominant-negative mutants of SHP-2 and Src abolished the SSTR1-mediated PTPeta activation, suggesting that all these effectors participate in the activation of PTPeta. In basal conditions, JAK2 forms a multimeric complex with SHP-2, Src and PTPeta. In response to SST, JAK2 is activated in a G protein-dependent manner, dissociates from and phosphorylates SHP-2, increasing its activity. Subsequently, SHP-2 dissociates from Src, dephosphorylates the Src inhibitory tyrosine-529, and causes an autocatalytical increase of the phosphorylation of Src tyrosine 418, located inside its kinase activation loop. Active Src, in turn, controls the activity of PTPeta, via a direct interaction and phosphorylation of the phosphatase. These data for the first time depict an intracellular pathway involving a precise sequence of interactions and cross-activation among tyrosine phosphatases and kinases acting upstream of PTPeta. In particular the sequential activation of JAK2, SHP-2, and Src conveys the molecular signaling from SSTR1 to the activation of this phosphatase that is responsible for the final biological effects of SST.  相似文献   

8.
The protein tyrosine phosphatases (PTPs) SHP-1, SHP-2 and PTP1B are overexpressed early on during the development of cerulein -induced acute pancreatitis (AP) in rats, and their levels can be modulated by some species of mitogen-activated protein kinases (MAPKs), the intracellular levels of cAMP and by general leukocyte infiltration, the latter at least for SHP-2 and PTP1B. In this study we show that cerulein treatment activates extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) but not p38 MAPK during the early phase of cerulein-induced AP (2 h after the first injection of cerulein). Therefore, by using the MAPK inhibitors SP600125 (a specific JNK inhibitor) and PD98059 (a specific ERK inhibitor), we have unmasked the particular MAPK that underlies the modulation of the expression levels of these PTPs. JNK would act by preventing SHP-1 protein expression from increasing beyond a certain level. ERK 1/2 was the main MAPK involved in the increase in SHP-2 protein expression due to cerulein. JNK negatively modulated the SH2-domain containing PTPs. Both MAPKs played a role in the increase in PTP1B protein expression due to cerulein. Finally, by using the white blood cell inhibitors vinblastine sulfate, gadolinium chloride and FK506 (tacrolimus), we show that the macrophage activity or T-lymphocytes does not modulate the expression of any of the PTPs, although neutrophil infiltration was found to be a regulator of SHP-2 and PTP1B protein expression due to cerulein.  相似文献   

9.
Transforming growth factor-beta (TGF-beta) is involved in multiple processes including cell growth and differentiation. In particular, TGF-beta has been implicated in the pathogenesis of fibrotic lung diseases. In this study, we examined regulation of the mitogen-activated protein kinase pathway by TGF-beta1 in primary human lung fibroblasts. TGF-beta1 treatment resulted in extracellular signal-regulated kinase (ERK) pathway activation in a delayed manner, with maximal activity at 16 h. ERK activation occurred concomitantly with the induction of activator protein-1 (AP-1) binding, a nuclear factor required for activation of multiple genes involved in fibrosis. AP-1 binding was dependent on ERK activation, since the MEK-1 (mitogen-activated protein kinase kinase) inhibitor PD98059 inhibited TGF-beta1-induced binding. Induction of the receptor tyrosine kinase-linked growth factor, basic fibroblast growth factor (bFGF) protein expression temporally paralleled the activation of ERK/AP-1. Induction of AP-1 by TGF-beta1-conditioned medium was observed at 2 h, similar to AP-1 induction in response to exogenous bFGF. Dependence of ERK/AP-1 activation on bFGF induction was demonstrated by inhibition of TGF-beta1-induced ERK/AP-1 activation when conditioned medium from TGF-beta1-treated cells was incubated with bFGF-neutralizing antibody. Together, these results demonstrate that TGF-beta1 regulates the autocrine induction of bFGF, resulting in activation of the ERK mitogen-activated protein kinase pathway and induction of AP-1 binding.  相似文献   

10.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells.  相似文献   

11.
12.
13.
BACKGROUND: The rsk1 gene encodes the 90 kDa ribosomal S6 kinase 1 (RSK1) protein, which contains two kinase domains. RSK1, which is involved in regulating cell survival and proliferation, lies at the end of the signaling cascade mediated by the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinases. ERK activation and subsequent phosphorylation of the RSK1 carboxy-terminal catalytic loop stimulates phosphotransferase activity in the RSK1 amino-terminal kinase domain. When activated, RSK1 phosphorylates both nuclear and cytoplasmic substrates through this amino-terminal catalytic domain. It is thought that stimulation of the ERK/MAP kinase pathway is sufficient for RSK1 activation, but how ERK phosphorylation activates the RSK1 amino-terminal kinase domain is not known. RESULTS: The individual isolated RSK1 kinase domains were found to be under regulatory control. In vitro kinase assays established that ERK phosphorylates RSK1 within the carboxy-terminal kinase domain, and the phosphoinositide-dependent kinase 1 (PDK1) phosphorylates RSK1 within the amino-terminal kinase domain. In transiently transfected HEK 293E cells, PDK1 alone stimulated phosphotransferase activity of an isolated RSK1 amino-terminal kinase domain. Nevertheless, activation of full-length RSK1 in the absence of serum required activation by both PDK1 and ERK. CONCLUSIONS: RSK1 is phosphorylated by PDK1 in the amino-terminal kinase-activation loop, and by ERK in the carboxy-terminal kinase-activation loop. Activation of phosphotransferase activity of full-length RSK1 in vivo requires both PDK1 and ERK. RSK1 activation is therefore regulated by both the mitogen-stimulated ERK/MAP kinase pathway and a PDK1-dependent pathway.  相似文献   

14.
15.
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways.  相似文献   

16.
17.
The type 1 insulin-like growth factor receptor (IGF-IR) is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. IGF-IR binding to its ligand, insulin-like growth factor (IGF-I) activates phosphoinositide 3-kinase (PI3K), promotes cell proliferation by activating the mitogen-activated protein kinase (MAPK) cascade, and blocks apoptosis by inducing the phosphorylation and inhibition of proapoptotic proteins such as BAD. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that is required for c-Jun N-terminal kinase (JNK) and p38 activation in response to Fas and tumor necrosis factor (TNF) receptor stimulation, and for oxidative stress- and TNFalpha-induced apoptosis. The results presented here indicate that ASK1 forms a complex with the IGF-IR and becomes phosphorylated on tyrosine residue(s) in a manner dependent on IGF-IR activity. IGF-IR signaling inhibited ASK1 irrespective of TNFalpha-induced ASK1 activation and resulted in decreased ASK1-dependent JNK1 stimulation. Signaling through IGF-IR rescued cells from ASK1-induced apoptotic cell death in a manner independent of PI3K activity. These results indicate that IGF-IR signaling suppresses the ASK-1-mediated stimulation of JNK/p38 and the induction of programmed cell death. The simultaneous activation of MAP kinases and the inhibition of the stress-activated arm of the cascade by IGF-IR may constitute a potent proliferative signaling system and is possibly a mechanism by which IGF-I can stimulate growth and inhibit cell death in a wide variety of cell types and biological settings.  相似文献   

18.
It is now well-recognized that the mitogen-activated protein (MAP) kinase cascade facilitates signaling from an activated tyrosine kinase receptor to the nucleus. In fact, an increasing number of extracellular effectors have been reported to activate the MAP kinase cascade, with a significant number of cellular responses attributed to this activation. We set out to explore how two extracellular effectors, basic fibroblast growth factor (bFGF) and insulin-like growth factor 1 (IGF-1), which have both been reported to activate MAP kinase, generate quite distinct cellular responses in C2C12 myoblasts. We demonstrate here that bFGF, which is both a potent mitogen and inhibitor of myogenic differentiation, is a strong MAP kinase agonist. By contrast, IGF-1, which is equally mitogenic for C2C12 cells but ultimately enhances the differentiated phenotype, is a weak activator of the MAP kinase cascade. We further demonstrate that IGF-1 is a potent activator of both insulin receptor substrate IRS-1 tyrosyl phosphorylation and association of IRS-1 with activated phosphatidylinositol 3-kinase (PI 3-kinase). Finally, use of the specific MAP kinase kinase inhibitor, PD098059, and wortmannin, a PI 3-kinase inhibitor, suggests the existence of an IGF-1-induced, MAP kinase-independent signaling event which contributes to the mitogenic response of this factor, whereas bFGF-induced mitogenesis appears to strongly correlate with activation of the MAP kinase cascade.  相似文献   

19.
In many normal and transformed cell types, the intracellular second messenger cyclic AMP (cAMP) blocks the effects of growth factors and serum on mitogenesis, proliferation, and cell cycle progression. cAMP exerts these growth-inhibitory effects via inhibition of the mitogen-activated protein (MAP) kinase cascade. Here, using Hek293 and NIH 3T3 cells, we show that cAMP's inhibition of the MAP kinase cascade is mediated by the small G protein Rap1. Activation of Rap1 by cAMP induces the association of Rap1 with Raf-1 and limits Ras-dependent activation of ERK. In NIH 3T3 cells, Rap1 is required not only for cAMP's inhibition of ERK activation but for inhibition of cell proliferation and mitogenesis as well.  相似文献   

20.
The cellular adhesion status and the exposure to soluble growth factors both contribute to mitogen-activated protein (MAP) kinase activation. To date, however, whether mitogens acting through G-protein-coupled receptors (GPCRs) need cell adhesion to activate MAP kinases/extracellular signal-regulated kinases (ERK) 1, 2 has been poorly investigated. We addressed this point in primary cultures of Sertoli cells experimentally maintained in suspension, considering that follicle-stimulating hormone (FSH) activates ERK1, 2 in attached Sertoli cells by acting through a GPCR. We found that FSH actively repressed ERK1, 2, in a cAMP-dependent but cAMP-dependent protein kinase (PKA)-independent manner, and this inhibition required the activity of a tyrosine phosphatase. In comparison, in the absence of anchorage, ERK1, 2 were still activated by epidermal growth factor, in a PKA-dependent manner. Altogether, these data suggest that sensitivity of the MAP kinase response toward cell adhesion may depend, at least in part, on the class of receptor, GPCR or receptor with tyrosine kinase activity, by which it is triggered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号