首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reduction of low-molecular-weight Cu(II) and Fe(III) complexes by soybean leghemoglobin alpha was characterized using both kinetic analysis and 1H-NMR experiments. Whereas Fe(III) (CN)6(3-) was reduced through an outer sphere transfer over the exposed heme edge, all other Cu(II) and Fe(III) complexes investigated were reduced via a site-specific binding of the metal to the protein. Reduction of all metal complexes was enhanced by decreasing pH while only Fe(III)NTA reduction kinetics were altered by changes in ionic strength. Rates of reduction for both Cu(II) and Fe(III) were also affected inversely by the effective binding constant of the metal chelate used. NMR data confirmed that both Cu(II)NTA and Fe(III)NTA were bound to specific sites on the protein. Cu(II) bound preferentially to distal His-61 and Fe(III) exerted its greatest effect on two surface lysine residues with epsilon proton resonances at 3.04 and 3.12 ppm. The Fe(III)NTA complex also had a mild but noticeable line broadening effect on the distal His-61 singlet resonance near 5.3 ppm. Like hemoglobin and myoglobin, leghemoglobin might function not only as an oxygen carrier, but also as a biological reductant for low-molecular-weight Cu(II) and Fe(III) complexes.  相似文献   

2.
The ability of hemoglobin (myoglobin) to reduce directly low-molecular-weight complexes of Fe(III) to form methemoglobin (metmyoglobin) and the Fe(II)-tris(2,2'-bipyridine) complex under aerobic conditions is described. The reduction is not mediated by superoxide, O-.2, as shown by increased rates under anaerobic conditions and lack of inhibition by superoxide dismutase. The chemical nature of the Fe(III) complex presented influences the rate of reduction; one of the most effective chelating agents of cellular origin is Fe(III) X ATP. This mechanism may be of fundamental importance in the mobilization and utilization of iron in biological systems.  相似文献   

3.
The reactions of Ru(NH3)5py2+, Ru(NH3)4bpy2+, Ru2(NH3)10pz5+, RuRh(NH3)10pz5+ and Ru(NH3)5pz2+ with bromine are first-order in ruthenium and first-order in bromine. The rates decrease with increasing bromide ion concentration and, except for Ru(NH3)5pz2+, are independent of hydrogen ion concentration. The reactions are postulated to proceed via outer-sphere, one-electron transfer from Ru(II) to Br2 with the formation of Br2 as a reactive intermediate. The bromide inhibition is ascribed to the formation of Br3 which is unreactive in outer-sphere reactions because of the barrier imposed by the need to undergo reductive cleavage. The reaction of Ru(NH3)5pz2+ is inhibited by hydrogen ions. The hydrogen ion dependence shows that Ru(NH3)5pzH3+ has a pKa of 2.49 and is at least 500 times less reactive than Ru(NH3)5pz2+. The reaction of Ru2(NH3)10pz4+ with bromine is biphasic. The second phase has a rate identical to that of the Ru2(NH3)10pz5+-Br2 reaction. A detailed analysis shows that the reaction of Ru2(NH3)10pz4+ with bromine proceeds by a sequence of one-electron steps, Br2 being produced as an intermediate. A linear free energy relationship between rate constants and equilibrium constants, obeyed for all the reactions studied, provides an estimate of 1.5 × 102 M−1 s−1 for the self-exchange rate constant of the Br2/Br2 couple.  相似文献   

4.
In a previous study (Minotti, G., and Ikeda-Saito, M. (1991) J. Biol. Chem. 266, 20011-20017) we demonstrated the existence of a M(r) 66,000 microsomal iron protein (MIP) which stimulates NADPH oxidation by shunting electrons from NADPH-cytochrome P-450 reducase to its bound Fe(III). In the present study, purified MIP was depleted of iron and the apoMIP was examined for its ability to incorporate Fe(III) upon an incubation with Fe(II). It was found that apoMIP had an oxygen-dependent ferroxidase activity coupled with the incorporation of Fe(III). The reconstituted MIP exhibited a Fe(III) content and an NADPH oxidation activity similar to those of native MIP. However, the reconstitution of MIP from apoMIP and Fe(II) had to be performed in the presence of detergents to prevent the formation of protein aggregates and the oxidative incorporation of an iron which could not react with NADPH-cytochrome P-450 reductase. This redox inactive iron was probably bound nonspecifically to artifactual sites formed by the protein aggregates.  相似文献   

5.
The kinetics of binding of Cu (II), Tb (III) and Fe(III) to ovotransferrin have been investigated using the stopped-flow technique. Rate constants for the second-order reaction, k +, were determined by monitoring the absorbance change upon formation of the metal-transferrin complex in time range of milliseconds to seconds. The N and C sites appeared to bind a particular metal ion with the same rate; thus, average formation rate constants k + (average) were 2.4 × 104 M–1 s–1 and 8.3 × 104 M–1 S –1 for Cu (II) and Tb (III) respectively. Site preference (N site for Cu (II) and C site for Tb (III)) is then mainly due to the difference in dissociation rate constant for the metals. Fe (III) binding from Fe-nitrilotriacetate complex to apo-ovotransferrin was found to be more rapid, giving an average formation rate constant k + (average) of 5 × 105 M–1 s–1, which was followed by a slow increase in absorbance at 465 nm. This slow process has an apparent rate constant in the range 3 s–1 to 0.5 s–1, depending upon the degree of Fe (III) saturation. The variation in the rate of the second phase is thought to reflect the difference in the rate of a conformational change for monoferric and diferric ovotransferrins. Monoferric ovotransferrin changes its conformation more rapidly (3.4s–1) than diferric ovotransferrin (0.52 s–1). A further absorbance decrease was observed over a period of several minutes; this could be assigned to release of NTA from the complex, as suggested by Honda et al. (1980).Abbreviations Tf ovotransferrin - NTA nitrilotriacetate Jichi Medical School, School of Nursing, Yakushiji 3311-159, Minamikawachi, Tochigi, 329-04 Japan  相似文献   

6.
Although the oxidative destruction of glucose and fructose has been studied by several investigators over the past century, the mechanism by which phosphate promotes these oxidation reactions is not known. A wide range of oxidation products have been used to monitor the oxidation of sugars and free radicals have been shown to be involved. The influence of phosphate concentration on the rate of production of free radicals and several sugar oxidation products has been studied. It was found that fructose is much more susceptible to autoxidation than glucose, galactose, or sucrose. The promotion of sugar oxidation by phosphate was found to be iron dependent. Addition of the iron chelators, diethylenetriaminepentaacetic acid (DTPA) and desferrioxamine completely suppressed the oxidation reactions, even at high concentrations of phosphate. Formaldehyde was positively identified as a product of fructose oxidation by HPLC analysis of its acetylacetone adduct. A mechanism is proposed in which phosphate cleaves the oxo bridges of the iron(III)-fructose complex, based on UV spectral analysis and magnetic susceptibility measurements, and thereby catalyzes the autoxidation of fructose.  相似文献   

7.
A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.  相似文献   

8.
Acetate oxidation by dissimilatory Fe(III) reducers.   总被引:3,自引:3,他引:3       下载免费PDF全文
  相似文献   

9.
10.
It is demonstrated that the Cu(II), Co(III) and Ni(II) complexes of a siderophore chelating drug desferal cleave DNA, in contrast to the corresponding Fe(II) complex which does not bring about DNA scission. Hydroxy radical scavengers inhibit the cleavage reaction.  相似文献   

11.
The rate of oxidation of Fe(II) by atmospheric oxygen at pH 7.0 is significantly enhanced by low molecular weight Fe(III)-complexing agents in the order EDTA ≈ nitrilotriacetate > citrate > phosphate > oxalate. This simple effect of Fe(III) binding probably accounts for the “ferroxidase” activity exhibited by transferrin and ferritin.  相似文献   

12.
 The kinetics of the reduction of hexacyanoferrate(III) by myoglobin was studied as a function of temperature and pressure. The results of the study show that both oxy- and deoxymyoglobin are redox active species. The rate and activation parameters underline the operation of an outer-sphere electron transfer mechanism for the studied system. Received: 9 December 1996 / Accepted: 16 June 1997  相似文献   

13.
A species of Dechlorospirillum was isolated from an Fe(II)-oxidizing, opposing-gradient-culture enrichment using an inoculum from a circumneutral, freshwater creek that showed copious amounts of Fe(III) (hydr)oxide precipitation. In gradient cultures amended with a redox indicator to visualize the depth of oxygen penetration, Dechlorospirillum sp. strain M1 showed Fe(II)-dependent growth at the oxic-anoxic interface and was unable to utilize sulfide as an alternate electron donor. The bacterium also grew with acetate as an electron donor under both microaerophilic and nitrate-reducing conditions, but was incapable of organotrophic Fe(III) reduction or nitrate-dependent Fe(II) oxidation. Although members of the genus Dechlorospirillum are primarily known as perchlorate and nitrate reducers, our results suggest that some species are members of the microbial communities involved in iron redox cycling at the oxic-anoxic transition zones in freshwater sediments.  相似文献   

14.
A new ligand N-salicyloyl-N'-o-hydroxythiobenzhydrazide (H2Sotbh) forms complexes [Mn(HSotbh)2], [Fe(Sotbh-H)(H2O)2], [M(Sotbh)] [M=Co(II), Cu(II) and Zn(II)] and [Ni(Sotbh)(H(2)O)2], which were characterized by various physico-chemical techniques. M?ssbauer spectrum of [Fe(Sotbh-H)(H2O)2] reveals the quantum admixture of 5/2 and 3/2 spin-states. Mn(II), Cu(II) and Ni(II) complexes were observed to inhibit the growth of tumor in vitro, whereas, Fe(III), Co(II), Zn(II) complexes did not. In vivo administration of Mn(II), Cu(II) and Ni(II) resulted in prolongation of survival of tumor bearing mice. Tumor bearing mice administered with Mn(II), Cu(II) and Ni(II) complexes showed reversal of tumor growth associated induction of apoptosis in lymphocytes. The paper discusses the possible mechanisms and therapeutic implication of the H2Sotbh and its metal complexes in tumor regression and tumor growth associated immunosuppression.  相似文献   

15.
The 4-hydroxysalicylidenechitosan Schiff-base (2CS-Hdhba) was prepared by the condensation of 2,4-dihydroxybenzaldehyde with chitosan, and its metal complexes, [M(2CS-dhba)Cl2(H2O)2] (M(III) = Fe, Ru, Rh), [M′(2CS-dhba)(AcO)(H2O)2] (M′(II) = Co, Ni, Cu, Zn), [Pd(2CS-dhba)Cl(H2O)] and [Au(2CS-dhba)Cl2], are reported. These complexes were characterized by elemental analysis, by spectral data (FTIR, solid-phase 13C NMR, UV–vis and ESR spectroscopy), by morphological observations (SEM and XRD), and by magnetic and thermal measurements. The Schiff base (2CS-Hdhba) behaves as a bidentate chelate with a single negative charge. The azomethine nitrogen and the deprotonated 2-hydroxy centres with the pendant glucosamine hydroxy functionality play no role in coordination. The dissociation constants of 2CS-Hdhba and the stability constants of some of its metal complexes have been determined pH-metrically.  相似文献   

16.
Fe(III)-saccharide complexes of d-glucose and d-fructose have been synthesized from methanol using stoichiometric quantities of sodium salts of the corresponding saccharides. Both the compounds were isolated in the solid state and characterized by various analytical, spectroscopic, magnetic and cyclic voltammetric methods. Both the complexes were found to be stable, in solution, in the pH range 2.5–12.0.This paper is dedicated to Professor Richard H. Holm on his 60th birthday.  相似文献   

17.
Ferrimyoglobin at pH 7.4 binds nitric oxide to yield nitric oxide adducts. In the presence of glutathione (GSH), nitrosoadducts of Mb(III) react with it to give nitrosoglutathione, whose concentration has been determined with an apparatus based on a specific and sensitive solid-state amperometric gas sensor. The reaction constant between the adduct and glutathione, kGSH = (47 +/- 1) M(-1) x s(-1), obtained by UV-Vis spectroscopy kinetic measurements, is about one-eighth of the constant with OH- determined by other authors. We can explain this fact with the higher nucleophilicity of OH- compared to GSH, due to the bulkiness and charge of the species. It is known that the formation of nitrosothiols starting from nitrite or NO (nitrogen monoxide) and glutathione, in the absence of oxygen, is impossible. Thus, from a biological point of view, it is important to point out that GSH reacts with NO in the presence of ferrimyoglobin, even at physiological pH, to form nitrosoglutathione.  相似文献   

18.
Summary A simple kinetic model of As(III) oxidation by Fe(III) in the presence of pyrite andThiobacillus ferroxidans is described based on the stoichiometry of the reaction and bioproduction of Fe(III). The environmental consequences of this reaction were considered.  相似文献   

19.
Fe(II)-tris(2-pyridylmethyl)amine complexes, Fe(II)-tpa, having different co-existing anions, [Fe(tpa)(MeCN)2](ClO4)2 (1), [Fe(tpa)(MeCN)2](CF3SO3)2 (2) and [Fe(tpa)Cl2] (3), were prepared. Effective magnetic moments (evaluated by the Evans method) revealed that while 1-3 in acetone and 3 in acetonitrile (MeCN) have a high-spin Fe(II) ion at 298 K, the Fe(II) ions of 1 and 2 are in the low-spin state in MeCN. The aerobic oxidation of 1-3 was monitored by UV-Vis spectral changes in acetone or MeCN under air at 298 K. Only the high-spin Fe(II)-tpa complexes were oxidized with rate constants of kobs = 0.1-1.3 h−1, while 1 and 2 were stable in MeCN. The aerobic oxidation of 1 or 2 in acetone was greatly accelerated in the presence of pure, peroxide-free cyclohexene (1000 equiv.) and yielded a large amount of oxidized products; 2-cyclohexe-1-ol (A) and 2-cyclohexene-1-one (K) (A + K: 23 940% yield based on Fe; A/K = 0.3), and cyclohexene oxide (810%). Besides cyclohexene, aerobic oxidation of norbornene, cyclooctene, ethylbenzene, and cumene proceeded in the presence of 1 in acetone at 348 K without any reductant. Essential factors in the reaction are high-spin Fe(II) ion and labile coordination sites, both of which are required to generate Fe(II)-superoxo species as active species for the H-atom abstraction of hydrocarbons.  相似文献   

20.
Transferrin, the human iron transport protein, binds Ti(IV) even more tightly than it binds Fe(III). However, the fate of titanium bound to transferrin is not well understood. Here we present results which address the fate of titanium once bound to transferrin. We have determined the redox potentials for a series of Ti(IV) complexes and have used these data to develop a linear free energy relationship (LFER) correlating Ti(IV) ? Ti(III) redox processes with Fe(III) ? Fe(II) redox processes. This LFER enables us to compare the redox potentials of Fe(III) complexes and Ti(IV) complexes that mimic the active site of transferrin and allows us to predict the redox potential of titanium-transferrin. Using cyclic voltammetry and discontinuous metalloprotein spectroelectrochemistry (dSEC) in conjunction with the LFER, we report that the redox potential of titanium-transferrin is lower than − 600 mV (lower than that of iron-transferrin) and is predicted to be ca. − 900 mV vs. NHE (normal hydrogen electrode). We conclude that Ti(IV)/Ti(III) reduction in titanium-transferrin is not accessible by biological reducing agents. This observation is discussed in the context of current hypotheses concerning the role of reduction in transferrin mediated iron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号