首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding superoxide dismutase (SOD), sodM, from S. aureus was cloned and characterized. The deduced amino acid sequence specifies a 187-amino-acid protein with 75% identity to the S. aureus SodA protein. Amino acid sequence comparisons with known SODs and relative insensitivity to hydrogen peroxide and potassium cyanide indicate that SodM most likely uses manganese (Mn) as a cofactor. The sodM gene expressed from a plasmid rescued an Escherichia coli double mutant (sodA sodB) under conditions that are otherwise lethal. SOD activity gels of S. aureus RN6390 whole-cell lysates revealed three closely migrating bands of activity. The two upper bands were absent in a sodM mutant, while the two lower bands were absent in a sodA mutant. Thus, the middle band of activity most likely represents a SodM-SodA hybrid protein. All three bands of activity increased as highly aerated cultures entered the late exponential phase of growth, SodM more so than SodA. Viability of the sodA and sodM sodA mutants but not the sodM mutant was drastically reduced under oxidative stress conditions generated by methyl viologen (MV) added during the early exponential phase of growth. However, only the viability of the sodM sodA mutant was reduced when MV was added during the late exponential and stationary phases of growth. These data indicate that while SodA may be the major SOD activity in S. aureus throughout all stages of growth, SodM, under oxidative stress, becomes a major source of activity during the late exponential and stationary phases of growth such that viability and growth of an S. aureus sodA mutant are maintained.  相似文献   

2.
Superoxide dismutase (SOD) profiles of clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci (CoNS) were determined by using whole-cell lysates and activity gels. All S. aureus clinical isolates exhibited three closely migrating bands of activity as previously determined for laboratory strains of S. aureus: SodM, SodA, and a hybrid composed of SodM and SodA (M. W. Valderas and M. E. Hart, J. Bacteriol. 183:3399-3407, 2001). In contrast, the CoNS produced only one SOD activity, which migrated similarly to SodA of S. aureus. Southern analysis of eight CoNS species identified only a single sod gene in each case. A full-length sod gene was cloned from Staphylococcus epidermidis and determined to be more similar to sodA than to sodM of S. aureus. Therefore, this gene was designated sodA. The deduced amino acid sequence of the S. epidermidis sodA was 92 and 76% identical to that of the SodA and SodM proteins of S. aureus, respectively. The S. epidermidis sodA gene expressed from a plasmid complemented a sodA mutation in S. aureus, and the protein formed a hybrid with SodM of S. aureus. Both hybrid SOD forms as well as the SodM and SodA proteins of S. aureus and the S. epidermidis SodA protein exist as dimers. These data indicate that sodM is found only in S. aureus and not in the CoNS, suggesting an important divergence in the evolution of this genus and a unique role for SodM in S. aureus.  相似文献   

3.
A strategy for functional gene replacement in the chromosome of Lactobacillus gasseri is described. The phospho-beta-galactosidase II gene (lacII) was functionally replaced by the manganese superoxide dismutase (MnSOD) gene (sodA) from Streptococcus thermophilus, by adapting the insertional inactivation method described for lactobacilli [Russell, W.M. and Klaenhammer, T.R. 2001 Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl. Environ. Microbiol. 67, 4361-4364]. L. gasseri carrying the heterologous sodA gene grew on lactose as efficiently as the wild-type parent. An active MnSOD was expressed in the transgenic strain, and the enzyme migrated on PAGE-SOD activity gels to the same position as that of MnSOD from S. thermophilus. The expression of MnSOD from a single copy of sodA integrated in the chromosome of L. gasseri provided enhanced tolerance to hydrogen peroxide, and extended the viability of carbon/energy starved cultures stored at 25 degrees C. This is the first report showing the successful utilization of the pORI plasmids system to generate marker-free gene integration in L. gasseri strains.  相似文献   

4.
To study the influence of phosphoglucomutase (PGM) activity on exopolysaccharide (EPS) synthesis in glucose- and lactose-growing Streptococcus thermophilus, a knockout PGM mutant and a strain with elevated PGM activity were constructed. The pgmA gene, encoding PGM in S. thermophilus LY03, was identified and cloned. The gene was functional in Escherichia coli and was shown to be expressed from its own promoter. The pgmA-deficient mutant was unable to grow on glucose, while the mutation did not affect growth on lactose. Overexpression of pgmA had no significant effect on EPS production in glucose-growing cells. Neither deletion nor overexpression of pgmA changed the growth or EPS production on lactose. Thus, the EPS precursors in lactose-utilizing S. thermophilus are most probably formed from the galactose moiety of lactose via the Leloir pathway, which circumvents the need for a functional PGM.  相似文献   

5.
6.
In living organisms, exposure to oxygen provokes oxidative stress. A widespread mechanism for protection against oxidative stress is provided by the antioxidant enzymes: superoxide dismutases (SODs) and hydroperoxidases. Generally, these enzymes are not present in Lactobacillus spp. In this study, we examined the potential advantages of providing a heterologous SOD to some of the intestinal lactobacilli. Thus, the gene encoding the manganese-containing SOD (sodA) was cloned from Streptococcus thermophilus AO54 and expressed in four intestinal lactobacilli. A 1.2-kb PCR product containing the sodA gene was cloned into the shuttle vector pTRK563, to yield pSodA, which was functionally expressed and complemented an Escherichia coli strain deficient in Mn and FeSODs. The plasmid, pSodA, was subsequently introduced and expressed in Lactobacillus gasseri NCK334, Lactobacillus johnsonii NCK89, Lactobacillus acidophilus NCK56, and Lactobacillus reuteri NCK932. Molecular and biochemical analyses confirmed the presence of the gene (sodA) and the expression of an active gene product (MnSOD) in these strains of lactobacilli. The specific activities of MnSOD were 6.7, 3.8, 5.8, and 60.7 U/mg of protein for L. gasseri, L. johnsonii, L. acidophilus, and L. reuteri, respectively. The expression of S. thermophilus MnSOD in L. gasseri and L. acidophilus provided protection against hydrogen peroxide stress. The data show that MnSOD protects cells against hydrogen peroxide by removing O(2)(.-) and preventing the redox cycling of iron. To our best knowledge, this is the first report of a sodA from S. thermophilus being expressed in other lactic acid bacteria.  相似文献   

7.
Polyamines participate in numerous cellular processes and are required for normal cell growth in Escherichia coli. In this study, we constructed a new polyamine-deficient E. coli mutant and investigated the physiological function of polyamines during normal aerobic growth conditions. We showed that the requirement for sulfur-containing, branched chain, and aromatic amino acids, which was exhibited in the sodA sodB double mutant faced with severe oxidative stress, was also true of the polyamine-deficient mutant during normal aerobic cell growth. Sorbitol, sucrose, mannose, 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron), an antioxidant that functions as an oxygen radical scavenger including z.rad;O(2)(-), and thiamine partially relieved the cell growth defect caused by polyamine depletion in a dose-dependent manner. As was the case for the cells treated with paraquat, the mutant had an elongated shape compared with the polyamine-proficient wild type. Decreased aeration also relieved the cell growth defect of the polyamine-deficient mutant. Finally, we confirmed that chloromethyl-2('),7(')-dichlorofluorescin diacetate (DCFH-DA), which is oxidized in a fluorescent product in the presence of various oxidants, also fluoresce in the polyamine-deficient cells. These results showed that abnormal growth of the polyamine-deficient E. coli mutant results partially from oxidative stress-induced damage and the mutant thus exhibits the requirement for antioxidant or specific nutritional amino acid during normal aerobic growth.  相似文献   

8.
A new method for the identification of Enterococcus species has been developed. It combines PCR amplification of sodA gene and 16S-23S intergenic spacer region with restriction enzyme digestion followed by a melting curve analysis of the restriction fragments (MCARF). All strains analyzed were correctly identified by MCARF. This method was proved to be a reliable enterococcal identification tool.  相似文献   

9.
We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Deltappc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with L-aspartic acid, the final product of the metabolic pathway governed by phosphoenolpyruvate carboxylase. It was concluded that aspartate present in milk is not sufficient for the growth of S. thermophilus. As a consequence, phosphoenolpyruvate carboxylase activity was considered fundamental for the biosynthesis of L-aspartic acid in S. thermophilus metabolism. This enzymatic activity is therefore essential for growth of S. thermophilus in milk even if S. thermophilus was cultured in association with proteinase-positive Lactobacillus delbrueckii subsp. bulgaricus. It was furthermore observed that the supplementation of milk with aspartate significantly affected the level of urease activity. Further experiments, carried out with a p(ureI)-gusA recombinant strain, revealed that expression of the urease operon was sensitive to the aspartate concentration in milk and to the cell availability of glutamate, glutamine, and ammonium ions.  相似文献   

10.
Borrelia burgdorferi , the causative agent of Lyme disease, has a limited set of genes to combat oxidative/nitrosative stress encountered in its tick vector or mammalian hosts. We inactivated the gene encoding for superoxide dismutase A ( sodA , bb0153 ), an enzyme mediating the dismutation of superoxide anions and examined the in vitro and in vivo phenotype of the mutant. There were no significant differences in the in vitro growth characteristics of the sodA mutant compared with the control strains. Microscopic analysis of viability of spirochaetes revealed greater percentage of cell death upon treatment of sodA mutant with superoxide generators compared with its controls. Infectivity analysis in C3H/HeN mice following intradermal needle inoculation of 103 or 105 spirochaetes per mouse revealed complete attenuation of infectivity for the sodA mutant compared with control strains at 21 days post infection. The sodA mutant was more susceptible to the effects of activated macrophages and neutrophils, suggesting that its in vivo phenotype is partly due to the killing effects of activated immune cells. These studies indicate that SodA plays an important role in combating oxidative stress and is essential for the colonization and dissemination of B. burgdorferi in the murine model of Lyme disease.  相似文献   

11.
Site-directed mutagenesis (SDM) methods are very important in modern molecular biology, biochemistry, and protein engineering. Here, we present a novel SDM method that can be used for multiple mutation generation using type IIs restriction enzymes. This approach is faster and more convenient than the overlap polymerase chain reaction (PCR) method due to its having fewer reaction steps and being cheaper than, but as convenient as, enzymatic assembly. We illustrate the usefulness of our method by introducing three mutations into the bacterial Streptococcus thermophilus Cas9 (bStCas9) gene, converting the humanized S. thermophilus Cas9 (hStCas9) gene into nuclease dead or H847A nickase mutants and generating sunnyTALEN mutagenesis from a wild-type TALEN backbone.  相似文献   

12.
The adaptation to utilise lactose as primary carbon and energy source is a characteristic for Streptococcus thermophilus. These organisms, however only utilise the glucose moiety of lactose while the galactose moiety is excreted into the growth medium. In this study we evaluated the diversity of sugar utilisation and the conservation of the gal-lac gene cluster in a collection of 18 S. thermophilus strains isolated from a variety of sources. For this purpose analysis was performed on DNA from these isolates and the results were compared with those obtained with a strain from which the complete genome sequence has been determined. The sequence, organisation and flanking regions of the S. thermophilus gal-lac gene cluster were found to be highly conserved among all strains. The vast majority of the S. thermophilus strains were able to utilize only glucose, lactose, and sucrose as carbon sources, some strains could also utilize fructose and two of these were able to grow on galactose. Molecular characterisation of these naturally occurring Gal+ strains revealed up-mutations in the galKTE promoter that were absent in all other strains. These data support the hypothesis that the loss of the ability to ferment galactose can be attributed to the low activity of the galKTE promoter, probably as a consequence of the adaptation to milk in which the lactose levels are in excess.  相似文献   

13.
Sinorhizobium meliloti Rm5000 is an aerobic bacterium that can live free in the soil or in symbiosis with the roots of leguminous plants. A single detectable superoxide dismutase (SOD) was found in free-living growth conditions. The corresponding gene was isolated from a genomic library by using a sod fragment amplified by PCR from degenerate primers as a probe. The sodA gene was located in the chromosome. It is transcribed monocistronically and encodes a 200-amino-acid protein with a theoretical M(r) of 22,430 and pI of 5. 8. S. meliloti SOD complemented a deficient E. coli mutant, restoring aerobic growth of a sodA sodB recA strain, when the gene was expressed from the synthetic tac promoter but not from its own promoter. Amino acid sequence alignment showed great similarity with Fe-containing SODs (FeSODs), but the enzyme was not inactivated by H(2)O(2). The native enzyme was purified and found to be a dimeric protein, with a specific activity of 4,000 U/mg. Despite its Fe-type sequence, atomic absorption spectroscopy showed manganese to be the cofactor (0.75 mol of manganese and 0.24 mol of iron per mol of monomer). The apoenzyme was prepared from crude extracts of S. meliloti. Activity was restored by dialysis against either MnCl(2) or Fe(NH(4))(2)(SO(4))(2), demonstrating the cambialistic nature of the S. meliloti SOD. The recovered activity with manganese was sevenfold higher than with iron. Both reconstituted enzymes were resistant to H(2)O(2). Sequence comparison with 70 FeSODs and MnSODs indicates that S. meliloti SOD contains several atypical residues at specific sites that might account for the activation by manganese and resistance to H(2)O(2) of this unusual Fe-type SOD.  相似文献   

14.
The consumption of molecular oxygen by Pseudomonas aeruginosa can lead to the production of reduced oxygen species, including superoxide, hydrogen peroxide, and the hydroxyl radical. As a first line of defense against potentially toxic levels of endogenous superoxide, P. aeruginosa possesses an iron- and manganese-cofactored superoxide dismutase (SOD) to limit the damage evoked by this radical. In this study, we have generated mutants which possess an interrupted sodA (encoding manganese SOD) or sodB (encoding iron SOD) gene and a sodA sodB double mutant. Mutagenesis of sodA did not significantly alter the aerobic growth rate in rich medium (Luria broth) or in glucose minimal medium in comparison with that of wild-type bacteria. In addition, total SOD activity in the sodA mutant was decreased only 15% relative to that of wild-type bacteria. In contrast, sodB mutants grew much more slowly than the sodA mutant or wild-type bacteria in both media, and sodB mutants possessed only 13% of the SOD activity of wild-type bacteria. There was also a progressive decrease in catalase activity in each of the mutants, with the sodA sodB double mutant possessing only 40% of the activity of wild-type bacteria. The sodA sodB double mutant grew very slowly in rich medium and required approximately 48 h to attain saturated growth in minimal medium. There was no difference in growth of either strain under anaerobic conditions. Accordingly, the sodB but not the sodA mutant demonstrated marked sensitivity to paraquat, a superoxide-generating agent. P. aeuroginosa synthesizes a blue, superoxide-generating antibiotic similar to paraquat in redox properties which is called pyocyanin, the synthesis of which is accompanied by increased iron SOD and catalase activities (D.J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). Pyocyanin production was completely abolished in the sodB and sodA sodB mutants and was decreased approximately 57% in sodA mutants relative to that of the wild-type organism. Furthermore, the addition of sublethal concentrations of paraquat to wild-type bacteria caused a concentration-dependent decrease in pyocyanin production, suggesting that part of the pyocyanin biosynthetic cascade is inhibited by superoxide. These results suggest that iron SOD is more important than manganese SOD for aerobic growth, resistance to paraquat, and optimal pyocyanin biosynthesis in P. aeruginosa.  相似文献   

15.
16.
The study of glutathione status in aerobically grown Escherichia coli cultures showed that the total intracellular glutathione (GSHin + GSSGin) level falls by 63% in response to a rapid downshift in the extracellular pH from 6.5 to 5.5. The incubation of E. coli cells in the presence of 50 mM acetate or 10 micrograms/ml gramicidin S decreased the total intracellular glutathione level by 50 and 25%, respectively. The fall in the total intracellular glutathione level was accompanied by a significant decrease in the (GSHin:GSSGin) ratio. The most profound effect on the extracellular glutathione level was exerted by gramicidin S, which augmented the total glutathione level by 1.8 times and the (GSHout:GSSGout) ratio by 2.1 times. The gramicidin S treatment and acetate stress inhibited the growth of mutant E. coli cells defective in glutathione synthesis 5 and 2 times more severely than the growth of the parent cells. The pH downshift and the exposure of E. coli cells to gramicidin S and 50 mM acetate enhanced the expression of the sodA gene coding for superoxide dismutase SodA.  相似文献   

17.
18.
Gordonia westfalica Kb1 and Gordonia polyisoprenivorans VH2 induce the formation of an extracellular superoxide dismutase (SOD) during poly(cis-1,4-isoprene) degradation. To investigate the function of this enzyme in G. polyisoprenivorans VH2, the sodA gene was disrupted. The mutants exhibited reduced growth in liquid mineral salt media containing poly(cis-1,4-isoprene) as the sole carbon and energy source, and no SOD activity was detectable in the supernatants of the cultures. Growth experiments revealed that SodA activity is required for optimal growth on poly(cis-1,4-isoprene), whereas this enzyme has no effect on aerobic growth in the presence of water-soluble substrates like succinate, acetate, and propionate. This was detected by activity staining, and proof of expression was by antibody detection of SOD. When SodA from G. westfalica Kb1 was heterologously expressed in the sodA sodB double mutant Escherichia coli QC779, the recombinant mutant exhibited increased resistance to paraquat, thereby indicating the functionality of the G. westfalica Kb1 SodA and indirectly protection of G. westfalica cells by SodA from oxidative damage. Both sodA from G. polyisoprenivorans VH2 and sodA from G. westfalica Kb1 coded for polypeptides comprising 209 amino acids and having approximately 90% and 70% identical amino acids, respectively, to the SodA from Mycobacterium smegmatis strain MC2 155 and Micrococcus luteus NCTC 2665. As revealed by activity staining experiments with the wild type and the disruption mutant of G. polyisoprenivorans, this bacterium harbors only one active SOD belonging to the manganese family. The N-terminal sequences of the extracellular SodA proteins of both Gordonia species showed no evidence of leader peptides for the mature proteins, like the intracellular SodA protein of G. polyisoprenivorans VH2, which was purified under native conditions from the cells. In G. westfalica Kb1 and G. polyisoprenivorans VH2, SodA probably provides protection against reactive oxygen intermediates which occur during degradation of poly(cis-1,4-isoprene).  相似文献   

19.
20.
In an attempt to isolate the superoxide dismutase (SOD) gene from the anaerobic sulfate-reducing bacterium Desulfoarculus baarsii, a DNA fragment was isolated which functionally complemented an Escherichia coli mutant (sodA sodB) deficient in cytoplasmic SODs. This region carries two open reading frames with sequences which are very similar to that of the rbo-rub operon from Desulfovibrio vulgaris. Independent expression of the rbo and rub genes from ptac showed that expression of rbo was responsible for the observed phenotype. rbo overexpression suppressed all deleterious effects of SOD deficiency in E. coli, including inactivation by superoxide of enzymes containing 4Fe-4S clusters and DNA damage produced via the superoxide-enhanced Fenton reaction. Thus, rbo restored to the sodA sodB mutant the ability to grow on minimal medium without the addition of branched amino acids, and growth on gluconate and succinate carbon sources was no longer impaired. The spontaneous mutation rate, which is elevated in SOD-deficient mutants, returned to the wild-type level in the presence of Rbo, which also restored aerobic viability of sodA sodB recA mutants. Rbo from Desulfovibrio vulgaris, but not Desulfovibrio gigas desulforedoxin, which corresponds to the NH2-terminal domain of Rbo, complemented sod mutants. The physiological role of Rbo in sulfate-reducing bacteria is unknown. In E. coli, Rbo may permit the bacterium to avoid superoxide stress by maintaining functional (reduced) superoxide sensitive 4Fe-4S clusters. It would thereby restore enzyme activities and prevent the release of iron that occurs after cluster degradation and presumably leads to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号