首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The hydrothermal vent tubeworm Riftia pachyptila lacks a mouth and gut and lives in association with intracellular, sulfide-oxidizing chemoautotrophic bacteria. Growth of this tubeworm requires an exogenous source of nitrogen for biosynthesis, and, as determined in previous studies, environmental ammonia and free amino acids appear to be unlikely sources of nitrogen. Nitrate, however, is present in situ (K. Johnson, J. Childress, R. Hessler, C. Sakamoto-Arnold, and C. Beehler, Deep-Sea Res. 35:1723–1744, 1988), is taken up by the host, and can be chemically reduced by the symbionts (U. Hentschel and H. Felbeck, Nature 366:338–340, 1993). Here we report that at an in situ concentration of 40 μM, nitrate is acquired by R. pachyptila at a rate of 3.54 μmol g−1 h−1, while elimination of nitrite and elimination of ammonia occur at much lower rates (0.017 and 0.21 μmol g−1 h−1, respectively). We also observed reduction of nitrite (and accordingly nitrate) to ammonia in the trophosome tissue. When R. pachyptila tubeworms are exposed to constant in situ conditions for 60 h, there is a difference between the amount of nitrogen acquired via nitrate uptake and the amount of nitrogen lost via nitrite and ammonia elimination, which indicates that there is a nitrogen “sink.” Our results demonstrate that storage of nitrate does not account for the observed stoichiometric differences in the amounts of nitrogen. Nitrate uptake was not correlated with sulfide or inorganic carbon flux, suggesting that nitrate is probably not an important oxidant in metabolism of the symbionts. Accordingly, we describe a nitrogen flux model for this association, in which the product of symbiont nitrate reduction, ammonia, is the primary source of nitrogen for the host and the symbionts and fulfills the association's nitrogen needs via incorporation of ammonia into amino acids.  相似文献   

2.
Cells of the green paramecium, Paramecium bursaria, contain several hundred endosymbiont cells. The properties of the symbionts are considered to vary depending on the collection site of the host. Difficulties in achieving axenic cells and maintenance of axenic strains for long periods have been reported for symbiotic algae from P. bursaria isolated in Japan. To establish axenic algal strains from such Japanese P. bursaria, symbionts were isolated carefully, and isolated axenic strains were grown on an agar medium containing organic nitrogen compounds. Symbiotic algal strains were obtained from three Japanese P. bursaria strains and their axenicity was confirmed by DAPI staining, cultural tests of bacterial contamination, and DGGE-PCR. These axenic strains have been maintained for over 2 years. Utilization of carbohydrates and nitrogen compounds by symbionts was examined. Monosaccharides (glucose and fructose) increased the growth of the symbiont but disaccharides (maltose and sucrose) did not. Japanese axenic symbionts were able to use ammonia and amino acids, but not nitrate or nitrite. While potent nitrite reductase activity was stimulated by nitrate induction, nitrate reductase activity was not. Nitrate utilization of Japanese symbionts differed from that reported for European and American symbionts.  相似文献   

3.
The giant tube worm, Riftia pachyptila (phylum Vestimentifera), is known only from four widely separated sulfide-rich deep-sea hydrothermal vent systems. This invertebrate is nourished by intracellular, chemoautotrophic bacterial symbionts which reside in a specialized trophosome tissue. The symbiont has not been cultured independently and is believed to be acquired de novo by host larvae of each generation. In the current study, R. pachyptila symbiont DNA was purified from the two most distant sites on the basis of its difference in density versus host DNA. These two standards were hybridized against trophosome DNAs of 13 individuals from the Guaymas Basin, Galapagos Rift, and 13 degrees N vents. This indicated that all R. pachyptila symbionts are conspecific and that the variability in DNA-DNA hybridization (relative binding ratio [RBR]) was comparable within or between widely separated vents. The symbiont of another tube worm, Tevnia jerichonana, was found to be the same as that of R. pachyptila, the first case in which distinct hosts possess the same sulfur bacterial symbiont. By contrast, Lamellibrachia sp. (same class as T. jerichonana) showed insignificant RBR with the R. pachyptila symbiont. DNA derived from solely eucaryotic tissue of R. pachyptila showed a surprisingly high RBR (20 to 50) with density-separated DNA standards. With DNAs obtained from physically separated symbionts, independent solution hybridization experiments confirmed the above-described conclusions. Possible explanations for this host-symbiont homology are discussed.  相似文献   

4.
Nitrate or nitrite can be ingested or endogenously produced from nitric oxide. They can cause intoxication and are of general concern for health because they relate to various diseases. Our goal was to study ontogenetic and nutritional effects on the nitrate+nitrite (NOx-) status in cattle, particularly calves. NOx- concentration in blood plasma, cerebrospinal fluid, saliva, and urine was measured based on nitrate conversion by added nitrate reductase to nitrite, which was then determined by the Griess reaction. Concentrations of nitrate were the result of the difference between NOx- and nitrite values. Nitrate in blood plasma, saliva and urine was > or =97% and in cerebrospinal fluid of calves was approximately 35% of NOx-. Preprandial plasma NOx- in calves born after shortened or normal lengths of pregnancy (277 and 290 days) was 470 and 830 micromol/l, respectively, decreased within 4-7 days to 40-60 micromol/l, remained in this range up to 4 months, was < or =5 micromol/l in heifers and no longer measurable in 3-8-year-old cows. Cerebrospinal NOx- in 8-day-old calves was 14 micromol/l and approximately 11-fold lower than in blood plasma. Salivary NOx- decreased postnatally from 600 to 200 micromol/l at 2 days and to 25 micromol/l at 4 weeks. Urinary NOx- excretion decreased from 125 or 16 micromol/l per kg x 24 h in 5-day-old calves to 45 or 8 micromol/kg x 24 h between 10 and 115 days of life and was undetectable in urine of heifers and cows. Feeding neonatal calves no or variable amounts of colostrum, delaying colostrum intake by 24 h after birth or feeding at different feeding intensity had no effect on the NOx- status. In conclusion, the high plasma, salivary and urinary NOx- concentrations especially in newborn calves, ingesting but insignificant amounts of nitrite or nitrate, indicated marked endogenous formation of nitrate, which decreased with age. The high nitrate status may contribute to enhanced susceptibility of young calves to exogenous nitrite+nitrite ingestion.  相似文献   

5.
Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that--contrary to previous assertions--Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution.  相似文献   

6.
The metabolic fate of nitrogen from 15N-labeled sodium nitrate has been investigated in four healthy Polish Merino ewes. 15N-labeled sodium nitrate was administered intravenously at the dosage of 400 micromol.kg(-1) body weight. Blood plasma and urine concentrations of nitrate, ammonia, and urea and 15N enrichment of ammonia and urea were estimated over a 50-h period following 15N-nitrate administration. Nitrate (NO3-) was slowly eliminated from the blood plasma, and the presence of NO3(-) in the blood plasma above the nitrate "background" was observed for 50 h. 15N enrichment of blood plasma urea already appeared at 15 min and reached the maximum 6 h after 15N-nitrate administration. The urinary excretion of nitrate occured during 50 h after 15N-nitrate injection; the total urine excretion of NO3(-) was 23.63+/-2.39% of the administered dose. The mean urinary recoveries of nitrogen as 15N-urea and 15N-ammonia were 14.76+/-1.32% and 0.096+/-0.015% of the administered 15N-nitrate dose, respectively. It should be pointed out that in total only 38.49% of the administered nitrate-N was excreted in urine (as nitrate, ammonia and urea nitrogen) during 50 h. The results obtained indicate that sheep are able to store nitrate nitrogen in their body. The fate of the remaining approximately 60% of the 15NO3(-) administered dose is unknown. The results obtained do not allow one to conclude what fraction of the unrecovered approximately 60% of the 15NO3(-) dose was utilized by gastrointestinal microorganisms, and (or) metabolized, or stored in sheep tissues.  相似文献   

7.
植物通过硝酸盐同化途径以硝酸盐和氨的形式吸收氮元素。硝酸盐的同化是一个受到严格控制的过程,其中两个先后参加反应的酶——硝酸还原酶(NR)和亚硝酸还原酶(NiR)对初级氮的同化起主要调控。在高等植物中,NR和NiR基因的转录及转录后加工受到各种内在和外在因素的影响,翻译后调控是消除亚硝酸盐积累的重要机制。随着分子生物学技术的发展,可以更容易地通过突变体和转基因方式来研究NR和NiR基因的调控。  相似文献   

8.
The bacterial endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila play a key role in providing their host with fixed carbon. Results of prior research suggest that the symbionts are selected from an environmental bacterial population, although a free-living form has been neither cultured from nor identified in the hydrothermal vent environment. To begin to assess the free-living potential of the symbiont, we cloned and characterized a flagellin gene from a symbiont fosmid library. The symbiont fliC gene has a high degree of homology with other bacterial flagellin genes in the amino- and carboxy-terminal regions, while the central region was found to be nonconserved. A sequence that was homologous to that of a consensus sigma28 RNA polymerase recognition site lay upstream of the proposed translational start site. The symbiont protein was expressed in Escherichia coli, and flagella were observed by electron microscopy. A 30,000-Mr protein subunit was identified in whole-cell extracts by Western blot analysis. These results provide the first direct evidence of a motile free-living stage of a chemoautotrophic symbiont and support the hypothesis that the symbiont of R. pachyptila is acquired with each new host generation.  相似文献   

9.
Nitrate and nitrite concentrations in the water and nitrous oxide and nitrite fluxes across the sediment-water interface were measured monthly in the River Colne estuary, England, from December 1996 to March 1998. Water column concentrations of N(2)O in the Colne were supersaturated with respect to air, indicating that the estuary was a source of N(2)O for the atmosphere. At the freshwater end of the estuary, nitrous oxide effluxes from the sediment were closely correlated with the nitrite concentrations in the overlying water and with the nitrite influx into the sediment. Increases in N(2)O production from sediments were about 10 times greater with the addition of nitrite than with the addition of nitrate. Rates of denitrification were stimulated to a larger extent by enhanced nitrite than by nitrate concentrations. At 550 microM nitrite or nitrate (the highest concentration used), the rates of denitrification were 600 micromol N.m(-2).h(-1) with nitrite but only 180 micromol N.m(-2).h(-1) with nitrate. The ratios of rates of nitrous oxide production and denitrification (N(2)O/N(2) x 100) were significantly higher with the addition of nitrite (7 to 13% of denitrification) than with nitrate (2 to 4% of denitrification). The results suggested that in addition to anaerobic bacteria, which possess the complete denitrification pathway for N(2) formation in the estuarine sediments, there may be two other groups of bacteria: nitrite denitrifiers, which reduce nitrite to N(2) via N(2)O, and obligate nitrite-denitrifying bacteria, which reduce nitrite to N(2)O as the end product. Consideration of free-energy changes during N(2)O formation led to the conclusion that N(2)O formation using nitrite as the electron acceptor is favored in the Colne estuary and may be a critical factor regulating the formation of N(2)O in high-nutrient-load estuaries.  相似文献   

10.
Klebsiella aerogenes W70 could grow aerobically with nitrate or nitrite as the sole nitrogen source. The assimilatory nitrate reductase and nitrite reductase responsible for this ability required the presence of either nitrate or nitrite as an inducer, and both enzymes were repressed by ammonia. The repression by ammonia, which required the NTR (nitrogen regulatory) system (A. Macaluso, E. A. Best, and R. A. Bender, J. Bacteriol. 172:7249-7255, 1990), did not act solely at the level of inducer exclusion, since strains in which the expression of assimilatory nitrate reductase and nitrite reductase was was independent of the inducer were also susceptible to repression by ammonia. Insertion mutations in two distinct genes, neither of which affected the NTR system, resulted in the loss of both assimilatory nitrate reductase and nitrite reductase. One of these mutants reverted to the wild type, but the other yielded pseudorevertants at high frequency that were independent of inducer but still responded to ammonia repression.  相似文献   

11.
Summary The main nitrogen source for most higher plants is soil nitrate. Prior to its incorporation into amino acids, plants reduce nitrate to ammonia in two enzymatic steps. Nitrate is reduced by nitrate reductase to nitrite, which is further reduced to ammonia by nitrite reductase. In this paper, the complete primary sequence of the precursor protein for spinach nitrite reductase has been deduced from cloned cDNAs. The cDNA clones were isolated from a nitrate-induced cDNA library in two ways: through the use of oligonucleotide probes based on partial amino acid sequences of nitrite reductase and through the use of antibodies raised against purified nitrite reductase. The precursor protein for nitrite reductase is 594 amino acids long and has a 32 amino acid extension at the N-terminal end of the mature protein. These 32 amino acids most likely serve as a transit peptide involved in directing this nuclearencoded protein into the chloroplast. The cDNA hybridizes to a 2.3 kb RNA whose steady-state level is markedly increased upon induction with nitrate.  相似文献   

12.
Penaeus monodon (12.13+/-1.14 g) exposed individually to six different nitrite and nitrate regimes (0.002, 0.36 and 1.46 mM nitrite combined with 0.005 and 7.32 mM nitrate), at a salinity of 25 ppt, were examined for hemolymph nitrogenous compounds and whole shrimp's nitrogen excretions after 24 h. Nitrogen excretion increased directly with ambient nitrite and nitrate. Hemolymph nitrite, nitrate, urea and uric acid levels increased, while hemolymph ammonia, oxyhemocyanin and protein were inversely related to ambient nitrite. Exposure of P. monodon to elevated nitrite in the presence of 7.32 mM nitrate did not alter hemolymph nitrite, ammonia, uric acid, oxyhemocyanin and protein levels, but caused an increase in hemolymph nitrate and a decrease in hemolymph urea as compared to exposure to elevated nitrite only. Following exposure to elevated nitrite, nitrite was oxidized to nitrate and P. monodon showed uricogenesis and uricolysis. The shrimp also used strategies to avoid joint toxicities of nitrite and metabolic ammonia by removing ammonia or reducing ammonia production under the stress of elevated nitrite.  相似文献   

13.
Specimens of Lamellibrachia ( Annelida: Siboglinidae ) were recently discovered at cold seeps in the eastern Mediterranean. In this study, we have investigated the phylogeny and function of intracellular bacterial symbionts inhabiting the trophosome of specimens of Lamellibrachia sp. from the Amon mud volcano, as well as the bacterial assemblages associated with their tube. The dominant intracellular symbiont of Lamellibrachia sp. is a gammaproteobacterium closely related to other sulfide-oxidizing tubeworm symbionts. In vivo uptake experiments show that the tubeworm relies on sulfide for its metabolism, and does not utilize methane. Bacterial communities associated with the tube form biofilms and occur from the anterior to the posterior end of the tube. The diversity of 16S rRNA gene phylotypes includes representatives from the same divisions previously identified from the tube of the vent species Riftia pachyptila , and others commonly found at seeps and vents.  相似文献   

14.
Sulfurospirillum deleyianum grew in batch culture under anoxic conditions with sulfide (up to 5 mM) as electron donor, nitrate as electron acceptor, and acetate as carbon source. Nitrate was reduced to ammonia via nitrite, a quantitatively liberated intermediate. Four moles of sulfide were oxidized to elemental sulfur per mole nitrate converted to ammonia. The molar growth yield per mole sulfide consumed, Ym, was 1.5 ± 0.2 g mol–1 for the reduction of nitrate to ammonia. By this type of metabolism, S. deleyianum connected the biogeochemical cycles of sulfur and nitrogen. The sulfur reductase activity in S. deleyianum was inducible, as the activity depended on the presence of sulfide or elemental sulfur during cultivation with nitrate or fumarate as electron acceptor. Hydrogenase activity was always high, indicating that the enzyme is constitutively expressed. The ammonia-forming nitrite reductase was an inducible enzyme, expressed when cells were cultivated with nitrate, nitrite, or elemental sulfur, but repressed after cultivation with fumarate. Received: 13 March 1995 / Accepted: 29 May 1995  相似文献   

15.
Cultures of Pseudomonas fluorescens DF57 were grown on different carbon and nitrogen sources. Glucose, succinate and acetate were used as carbon source and pulsed to an aerobic steady-state cultivation of P. fluorescens DF57 at D = 0.1 h(-1) with citrate as limiting carbon source. Glucose was utilised with the fastest uptake rate (19.4 C mmol l(-1) h(-1)) compared to succinate (8.8 C mmol l(-1) h(-1)) and acetate (4.3 C mmol l(-1) h(-1)). Acetate triggered an inhibition of cellular metabolism, which resulted in 2-h long growth arrest after its addition to the steady-state culture. The influence of the nitrogen source was investigated in an aerobic cultivation on a mixture of ammonium and nitrate as limiting nitrogen sources and citrate as non-limiting carbon source. When ammonia and nitrate were pulsed to the steady-state culture, they were mainly assimilated into biomass with a maximum uptake rate of 111 and 33 mg N l(-1) h(-1), respectively. Nitrate uptake was never complete as the residual concentration in the chemostat cultivation was 30 mg N l(-1) nitrate. A pulse of nitrite in the cultivation broth resulted in an inhibition of the growth but not of the primary metabolism, as nitrite was taken up at 38 mg N l(-1) h(-1), citrate was consumed and cofactors were produced continuously. In all experiments, oxygen was used as electron acceptor.  相似文献   

16.
The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system.  相似文献   

17.
The steady-state levels of nitrate, nitrite, and ammonium were estimated in the green alga Ulva rigida C. Agardh in darkness after addition of 0.5 mM KNO3 and irradiation with red (R) and blue (B) light pulses of different duration (5 and 30 min). The net uptake of nitrate was very rapid. Seventy-five percent of the nitrate added was consumed after 60 min in darkness. Although uptake was stable after R or B, efflux of nitrate occurred within 3 h in the dark control and when R or B were followed by far-red (FR) irradiation. The internal nitrate concentration after 3 h in darkness was similar after R and B light pulses; however, the intracellular ammonium was higher after R than after B. The intracellular nitrate and ammonium decreased when FR tight pulses were applied immediately after R or B. Thus, the involvement of phytochrome in the transport of nitrate and ammonium is proposed. Nitrate reductase activity, measured by the in situ method, was increased by both R and B light pulses. The effect was partially reversed by FR light. Nitrate reductase activity was higher after 5 min of R light than after 5 min of B. However, after 30-min light pulses, the relative increase in activity was reversed for R and B. We propose that phytochrome and a blue-light photoreceptor are involved in regulation of nitrogen metabolism. Nitrate uptake and reduction correlates with previously detected light-regulated accumulation of protein in Ulva rigida under the same experimental conditions.  相似文献   

18.
Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.  相似文献   

19.
Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.  相似文献   

20.
Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conservation, whereas nitrite reductase seems to be a cytosolic enzyme involved in NADH reoxidation. Syntheses of both enzymes are inhibited by oxygen and induced to greater or lesser degrees by nitrate or nitrite, respectively. In whole cells, nitrite reduction is inhibited by nitrate and also by high concentrations of nitrite (> or = 10 mM). Nitrite did not influence nitrate reduction. Two possible mechanisms for the inhibition of nitrite reduction by nitrate that are not mutually exclusive are discussed. (i) Competition for NADH nitrate reductase is expected to oxidize the bulk of the NADH because of its higher specific activity. (ii) The high rate of nitrate reduction could lead to an internal accumulation of nitrite, possibly the result of a less efficient nitrite reduction or export. So far, we have no evidence for the presence of other dissimilatory or assimilatory nitrate or nitrite reductases in S. carnosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号