首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Osmotic Reversal of Temperature Sensitivity in Escherichia coli   总被引:6,自引:3,他引:3       下载免费PDF全文
Forty temperature-sensitive mutants, unable to grow on tryptone or nutrient agar at 42 C, were isolated from Escherichia coli K-12. When 0.5% NaCl was added to the medium, 32 grew at the nonpermissive temperature. Several were tested with different amounts of NaCl added to tryptone broth; all grew best when the osmolality of the medium was between 400 and 1,000 milliosmolal. One of the mutants was studied in more detail. Sucrose, inositol, KCl, and MgCl(2), as well as NaCl, permitted growth at 42 C. Glycerol, however, had no effect. When shifted from 30 to 42 C without osmotic protection, the mutant stopped growing but did not lyse, die, or leak significant amounts of intracellular material. In a similar shift experiment, a second mutant leaked all of its trichloroacetic acid-soluble pools into the medium. The majority of the mutants were hypersensitive to certain antibiotics, indicating possible cell envelope defects.  相似文献   

2.
Three mutants of Escherichia coli K-12 which form filaments during 42 C incubation have been characterized. The mutant strains AX621, AX629, and AX655 continued to grow and to synthesize deoxyribonucleic acid at 42 C for 150 to 180 min, after which time growth ceased. When cultures of the mutants were transferred from 42 to 28 C, septation of the filaments began after a 25- to 30-min period and continued at a greater than normal rate until no filaments remained. Addition of chloramphenicol at the time of transfer from 42 to 28 C prevented cell division in strain AX655 and caused lysis of strains AX621 and AX629. The temperature sensitivity mutation in each strain mapped near leu. For strain AX621, the mutation was specifically located between leu and nadC by P1 transduction. Properties of these strains are compared with those of other cell division mutants.  相似文献   

3.
Summary Z mutants of bacteriophage P2 form clear plaques and are unable to give rise to stable lysogens in Escherichia coli C. To study the function of the Z gene in lysogenization by P2, temperature-sensitive mutants were isolated. Those that were classified as Z mutants by complementation were all cold-sensitive (cs); they were unable to form lysogens at 30° C, but had wild type phenotype at 42° C. When lysogens carrying such mutants, prepared at 42° C, were shifted to the lower temperature, the bacteria continued to multiply at the normal rate until they reached concentrations of about 5 × 107 per ml, at which point the viable titer began to decrease. Inactivation of the bacteria at even lower concentrations occurred if they were transferred to medium taken from overnight cultures of the same strain, suggesting that they were sensitive to some material that had accumulated in the culture medium.The lethal material was produced not only by csZ lysogens, but by all derivatives of Escherichia coli C tested, including non-lysogens, and at both 30° C and 42° C. Only csZ lysogens were sensitive to it, however, and only at the lower temperature. A preliminary characterization of the material indicates that it is heat-stable, of low molecular weight and does not adsorb to activated charcoal.This work was supported by Research Grant 72 from the Swedish Medical Research Council  相似文献   

4.
The stability of plasmid F'lac in Escherichia coli strain SP45 (a temperature conditional mutant which grows as spherical cells at 42 degrees C and as a rod at 30 degrees C) was studied. F'lac elimination was demonstrated when bacteria exposed to subinhibitory concentrations of various chemicals were induced to form filaments. No plasmid loss was found when spherical cells were subjected to the same treatments. Plasmid loss was also observed in dnaA46 and lexA41 mutants when cell filamentation was induced at 42 degrees C, but not when they were cultured at 30 degrees C. Nalidixic acid promoted F'lac elimination at 0.25 micrograms ml-1 in a recA13 mutant and at 1.5 micrograms ml-1 in the recA+ counterpart. A marked difference was found in the rate of F'lac elimination from thermosensitive DNA gyrase mutants [gyrA43(Ts) and gyrB41(Ts)] between rods and their spherical (rodA51) derivatives growing at semipermissive temperature (36.5 degrees C). Plasmids carrying the ccd segment of F in DNA gyrase mutants were lost after 2.5 generations from rods and after 6 generation from spherical cells. Plasmid segregation into non-viable minicell-like elements was found after induction of filaments. These data suggest that plasmid stability is correlated with cell shape and that curing is more easily achieved when bacteria can elongate normally.  相似文献   

5.
A number of properties of temperature-sensitive mutants in murein synthesis are described. The mutants grow at 30 C but lyse at 42 C. One mutant possesses a temperature-sensitive d-alanyl-d-alanine adding enzyme, has an impaired rate of murein synthesis in vivo at both 30 and 42 C, and contains elevated levels of uridine diphosphate-N-acetyl-muramyl-tripeptide (UDP-MurNAc-l-Ala-d-Glu-m-diaminopimelic acid) at 42 C. The other mutant possesses an l-alanine adding enzyme with a very low in vitro activity at both 30 and 42 C. Its in vivo rate of murein synthesis is almost normal at 30 C but is much less at 42 C. When the murein precursors were isolated after incubation of the cells in the presence of (14)C-l-alanine, they contained only a fraction of the radioactivity that could be obtained from a wild-type strain. A genetic nomenclature for genes concerned with murein synthesis is proposed.  相似文献   

6.
Host functions required for replication of progeny double-stranded DNA of bacteriophage G4 were examined by using metabolic inhibitors and Escherichia coli dna mutants. In dna+ bacteria, synthesis of the progeny replicative form (RF) was relatively resistant to 30 microgram/ml of chloramphenicol, but considerably sensitive to 200 microgram/ml of rifampicin. The RF replication was severely inhibited by 50 microgram/ml of mitomycin C, 50 microgram/ml of nalidixic acid, or 200 microgram/ml of novobiocin. At 41 degrees C, synthesis of G4 progeny RF was distinctly affected in a dnaC(D) mutant and in a dnaG host. The progeny RF replication was prevented at 42 degrees C in a dnaE strain as well as in a dnaB mutant. In a dnaZ strain, the synthetic rate of the progeny RF was markedly reduced at 42 degrees C. At 43 degrees C, the rate of G4 progeny RF synthesis was reduced even in dna+ or dnaA bacteria, but significant amounts of the progeny RF were still synthesized in these hosts at the high temperature. In addition to five dna gene products, host rep function was essential for the RF replication.  相似文献   

7.
Mutants of Escherichia coli which have a defect in their permeability barrier were selected. The technique used was to employ a strain of E. coli having a deletion in the gene for lactose permease and to select for mutants which can grow on lactose at 40 C. Twenty such mutants were isolated and six of these were found to be more sensitive to actinomycin D, sodium deoxycholate, and sodium dodecyl sulfate than was the parental strain. They were also more sensitive to the antibiotics vancomycin and bacitracin, which inhibit peptidoglycan biosynthesis. These mutants were no more sensitive to several different colicins or phages than was the wild-type strain. One of the mutants selected by this technique has an abnormal morphology when grown on certain carbon sources in minimal medium, and this mutant is more extensively studied in the accompanying paper.  相似文献   

8.
The replication of M-13 in a strain of Escherichia coli with a thermosensitive lesion in deoxyribonucleic acid synthesis was studied. M-13 failed to replicate at the restrictive temperature, even when the parental replicative form was allowed to form at the permissive temperature. When cells which were actively producing phage at the permissive temperature were shifted to the restrictive temperature, phage production continued. The incorporation of radioactive label into phage particles at 42 C indicated that continued single-strand synthesis was unaffected by the lesion in the host cell.  相似文献   

9.
Summary we have screened 897 temperature sensitive growth mutants ofE. coli for mutant strains showing longer mRNA half-life. The fate of pulse-labelled RNA was examined at 42° C after cessation of RNA synthesis and with prior exposure to nonpermissive temperature (42° C). Eight stains showed altered turn-over of RNA (presumably mRNA), and further analysis on mutant strain JE15144 indicated that the stability of pulse-labeled RNA as well as of tryptophan (trp) mRNA increased four to seven fold over its parental strain at 42° C. At 4 min or 10 min after addition of rifampicin, some 70 to 80% of polyribosome in the growing cells could still be conserved in JE15144 cultured at the nonpermissive temperature while little, if any, polyribosomes remained in its parental strain (PA3092) under the same condition. Two generation times were required for complete stoppage of growth of this mutant strain after shifting to 42° C, and protein synthesis continued at a significant, but slightly reduced, rate at 42° C. However, functional decay of mRNA in the mutant strain, with respect to the capacity for producing peptides, appeared to be similar to the parent strain, with half-lives of 3.5 min in PA3092 and 4.7 min in JE15144.  相似文献   

10.
The effect of L-ethionine, the ethyl analog of the essential amino acid methionine, on the SOS system of Escherichia coli was studied. This compound does not induce either inhibition of cell division nor cessation of cell respiration in a RecA+ Met+ RelA+ strain, nor in RecA+ Met- RelA+ or RecA+ Met- RelA- mutants. Nevertheless, L-ethionine blocks the expression of both cited SOS functions in a recA441 mutant when it is growing at the restrictive temperature of 42 degrees C. Furthermore, the inhibitory effect of the L-ethionine on the induction of the SOS system in this mutant is increased when the cells are preincubated for several hours in the presence of the analog, before the temperature shift. Moreover, cultures of the recA441 mutant incubated at 42 degrees C in the presence of both L-ethionine and L-methionine present the same behaviour as the cultures of this mutant growing at the same temperature but without either amino acid. On the other hand, L-ethionine does not have any effect on the expression of the two mentioned SOS functions when these are induced by UV-irradiation in a RecA+ strain even if this compound is added to the cells several hours before irradiation.  相似文献   

11.
Two types of Escherichia coli mutants tolerant to beta-lactam antibiotics were isolated. One is E. coli chi2452, which showed a tolerant response against beta-lactam antibiotics when grown at 42 degrees C, and the others are the mutants C-80 and C-254, selected from mutagenized E. coli chi1776 by cycles of exposure to ampicillin, cephaloridine, and starvation of the nutritionally required diaminopimelic acid. Beta-lactam antibiotics caused rapid loss of viability and lysis in cultures of chi1776 or in chi2452 grown at 32 degrees C. In contrast, the same antibiotics caused only a reversible inhibition of growth in mutants C-80 and C-254 or in cultures of chi2452 grown at 42 degrees C. Beta-lactam antibiotics that show high affinity for penicillin-binding proteins 2 or 3 (mecillinam and cephalexin, respectively) induced similar morphological effects (ovoid cell formation and filament formation) in both parent and mutant strains. In contrast, beta-lactam antibiotics which have a high affinity for penicillin-binding protein 1 (e.g., cephaloridine or cefoxitin), which cause rapid lysis in the parental strains, caused cell elongation in the tolerant bacteria. In contrast to the parental cells, autolytic cell wall degradation was not triggered by beta-lactam treatment of chi2452 cells grown at 42 degrees C or in mutants C-80 and C-254. The total autolytic activity of mutants C-80 and C-254 was less than 30% that of the parent strain. However, virtually identical autolytic activities were found in cells of chi2452 grown either at 42 or 32 degrees C. Possible mechanisms for the penicillin tolerance of E. coli are considered on the basis of these findings.  相似文献   

12.
J Miki  M Maeda    M Futai 《Journal of bacteriology》1988,170(1):179-183
A mutant of Escherichia coli showing temperature-sensitive growth on succinate was isolated, and its mutation in the initiation codon (ATG to ATA) of the uncG gene (coding for the gamma subunit of H+-ATPase F0F1) was identified. This strain could grow on succinate as the sole carbon source at 25 and 30 degrees C, but not at 37 or 42 degrees C. When this strain was grown at 25 degrees C on succinate or glycerol, its membranes had about 15% of the ATPase activity of wild-type membranes, whereas when it was grown at 42 degrees C, its membranes had about 2% of the wild-type ATPase activity. Membranes of the mutant grown at 25 or 42 degrees C could bind F1 functionally, resulting in about 40% of the specific activity of wild-type membranes. The gamma subunit was identified in an EDTA extract of membranes of the mutant grown at 25 degrees C, but was barely detectable in the same amount of extract from the mutant grown at 42 degrees C. These results indicate that initiation of protein synthesis from the AUA codon is temperature sensitive and that the gamma subunit is essential for assembly of F1 in vivo as shown by in vitro reconstitution experiments (S. D. Dunn and M. Futai, J. Biol. Chem. 255:113-118, 1980).  相似文献   

13.
Pseudomonas aeruginosa AI 3 was able to grow in medium containing acetanilide (N-phenylacetamide) as a carbon source when NH4+ was the nitrogen source but not when urea was the nitrogen source. AIU mutants isolated from strain AI 3 grew on either medium. Urease levels in bacteria grown in the presence of urea were 10-fold lower when NH4+ or acetanilide was also in the medium, but there were no apparent differences in urease or its synthesis between strain AI 3 and mutant AIU 1N. The first metabolic step in the acetanilide utlization is catalyzed by an amidase. Amidases in several AIU strains showed altered physiochemical properties. Urea inhibited amidase in a time-dependent reaction, but the rates of the inhibitory reaction with amidases from the AIU mutants were slower than with AI 3 amidase. The purified amidase from AIU 1N showed a marked difference in its pH/activity profile from that obtained with purified AI 3 amidase. These observations indicate that the ability of strain AIU 1N and the other mutants to grow on acetanilide/urea medium is associated with a mutation in the amidase structural gene; this was confirmed for strain AIU 1N by transduction.  相似文献   

14.
The growth of thermosensitive Bacillus subtilis lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants (lysS1 and trypS1) (l-lysine:transfer ribonucleic acid [tRNA] ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) was terminated when exponential phase cells were shifted from 30 to 43 C in a rich medium. Under these conditions, the temperature-inhibited cells undergo thermal death; they rapidly lose their ability to form colonies at 30 C. Another lysyl-tRNA synthetase mutant (lysS2) is refractory to thermal death even though its growth is inhibited at 43 C. The thermal death response of the lysS1 mutant is affected by the stage of cell development. At periods in spore outgrowth and sporogenesis these cells become refractory to thermal death. The refractory state does not result from the production of an inhibitor, or from the degradation of an activator of thermal death. However, culture medium composition does modify the thermal death response. Rich media enhance the effect, and no thermal death occurs in the lysS1 strain grown in a minimal medium. Temperature-sensitive cells can grow in a lysine- (0.25 mM) or tryptophan- (0.25 mM) supplemented minimal medium at 43 C, but amino acid concentrations of 25 mM only transiently protect trypS1 and lysS1 cells from thermal death in a rich medium. Osmotic agents such as sucrose (0.5 M) and NaCl (0.34 M) completely prevent thermal death in the lysS1 strain, although growth is still arrested. On solid media, sucrose stabilized lysS1 cells can form colonies at the restrictive temperature, but neither sucrose (0.5 M) nor NaCl (0.34 M) stabilized the lysS1 enzyme in vitro. Chloramiphenicol increased the rate of thermal death of the lysS1 strain but decreased the thermal death response of the trypS1 mutant. Considering the nature of the enzyme defect in the lysS1 strain, the common genetic origin of the spore and vegetative lysyl-tRNA synthetase, and the protective effects exerted by lysine and osmotic agents, it is tentatively concluded that thermal death results from irreversible inactivation of the mutant gene product. According to this hypothesis, either the lysS1 enzyme is altered during sporogenesis or some physiological or structural aspect of this developmental phase can stabilize the mutant phenotype and thereby rescue cells from thermal death.  相似文献   

15.
Salmonella enterica, a bacterial, food-borne pathogen of humans, can contaminate raw fruits and vegetables. Unfortunately for consumers, the bacteria can survive in water used to wash away contaminating bacteria. The ability to survive the low-osmotic conditions of the wash water is attributed to the OpgGH operon that leads to the production of osmotically regulated periplasmic glucans. Mutants lacking OpgGH grow slowly under low-osmotic conditions, but there are also unexpected traits such as abnormal flagellar motility and reduced virulence in mice. To get a broader understanding of these pleiotropic effects under low osmolarity, we examined the proteome of these mutants using high-throughput mass spectrometry. We identified approximately one-third of the proteins encoded by the genome and used label-free spectral counting to determine the relative amounts of proteins in wild-type cultures and mutants. Mutants had reduced amounts of proteins required for osmotic sensing, flagellar motility, purine and pyrimidine metabolism, oxidative energy production, and protein translation. By contrast, mutants had greater amounts of ABC transporters needed to balance cellular osmolarity. Hence, the effects of OpgGH reach across the proteome, and the data are consistent with the mutant phenotypes.  相似文献   

16.
Escherichia coli K-12 mutants that are resistant to bacteriophage chi, defective in motility, and unable to grow at high temperature (42 degrees C) were isolated from among those selected for rifampin resistance at low temperature (30 degrees C) after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Genetic analysis of one such mutant indicated the presence of two mutations that probably affect the beta subunit of ribonucleic acid (RNA) polymerase: one (rif) causing rifampin resistance and the other (Ts-74) conferring resistance to phage chi (and loss of motility) and temperature sensitivity for growth. Observations with an electron microscope revealed that the number of flagella per mutant cell was significantly reduced, suggesting that the Ts-74 mutation somehow affected flagella formation at the permissive temperature. When a mutant culture was transferred from 30 to 42 degrees C, deoxyribonucleic acid synthesis accelerated normally, but RNA or protein synthesis was enhanced relatively little. The rate of synthesis of beta and beta' subunits of RNA polymerase was low even at 30 degrees C and was further reduced at 42 degrees C, in contrast to the parental wild-type strain. Expression of the lactose and other sugar fermentation operons, as well as lysogenization with phage lambda, occurred normally at 30 degrees C, suggesting that the mutation does not cause general shut-off of gene expression regulated by cyclic adenosine 3',5'-monophosphate.  相似文献   

17.
A unique lipolytic bacterium was isolated in a selective growth system consisting of 99% triglycerides and a 1% water phase. The bacterium, termed Pseudomonas aeruginosa YS-7, was able to grow in an environment of low water content and could also survive amphipathic, osmotic, and matrical water stress in a triglyceride-rich culture. The isolated strain was identified as P. aeruginosa on the basis of standard physiological, biochemical, and serological assays. The strain is a gram-negative motile rod, aerobic, pigment forming, and capable of growing at 42 degrees C. It is highly tolerant of high concentrations of the cationic detergent cetyltrimethylammonium bromide and of the fatty acid salts derived from bacterial hydrolysis of the oil. Growth of the bacterium in a pure culture in a 99% triglyceride medium lasted until most of the water was evaporated or consumed. Growth was accompanied by triglyceride hydrolysis, which continued to occur even after growth saturation until the water was totally depleted. No loss of viability was observed when the culture was maintained under water-depleted conditions for an additional 40 h. A second cycle of bacterial growth and triglyceride hydrolysis was immediately initiated upon the addition of 1% (vol/vol) water to the culture. Lipase activity was stable regardless of changes in culture conditions. The isolated strain is uniquely resistant to severe water stress in a triglyceride-rich medium or under cold acetone precipitation compared with 12 other microbial strains, including bacteria and yeasts. Among these 12, only the lipolytic strains grew in the 99% triglyceride medium, but they reached a cell mass fourfold smaller than that of P. aeruginosa YS-7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A unique lipolytic bacterium was isolated in a selective growth system consisting of 99% triglycerides and a 1% water phase. The bacterium, termed Pseudomonas aeruginosa YS-7, was able to grow in an environment of low water content and could also survive amphipathic, osmotic, and matrical water stress in a triglyceride-rich culture. The isolated strain was identified as P. aeruginosa on the basis of standard physiological, biochemical, and serological assays. The strain is a gram-negative motile rod, aerobic, pigment forming, and capable of growing at 42 degrees C. It is highly tolerant of high concentrations of the cationic detergent cetyltrimethylammonium bromide and of the fatty acid salts derived from bacterial hydrolysis of the oil. Growth of the bacterium in a pure culture in a 99% triglyceride medium lasted until most of the water was evaporated or consumed. Growth was accompanied by triglyceride hydrolysis, which continued to occur even after growth saturation until the water was totally depleted. No loss of viability was observed when the culture was maintained under water-depleted conditions for an additional 40 h. A second cycle of bacterial growth and triglyceride hydrolysis was immediately initiated upon the addition of 1% (vol/vol) water to the culture. Lipase activity was stable regardless of changes in culture conditions. The isolated strain is uniquely resistant to severe water stress in a triglyceride-rich medium or under cold acetone precipitation compared with 12 other microbial strains, including bacteria and yeasts. Among these 12, only the lipolytic strains grew in the 99% triglyceride medium, but they reached a cell mass fourfold smaller than that of P. aeruginosa YS-7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp2 ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese’s (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-14C into RNA still continued even after the incorporation of N-acetyl-3H-d-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48°C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48°C. This mutant, ts42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back from 48 to 37°C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.  相似文献   

20.
The evolutionary potential of a thermostable alpha-galactosidase, with regard to improved catalytic activity at high temperatures, was investigated by employing an in vivo selection system based on thermophilic bacteria. For this purpose, hybrid alpha-galactosidase genes of agaA and agaB from Bacillus stearothermophilus KVE39, designated agaA1 and agaB1, were cloned into an autonomously replicating Thermus vector and introduced into Thermus thermophilus OF1053GD (DeltaagaT) by transformation. This selector strain is unable to metabolize melibiose (alpha-galactoside) without recombinant alpha-galactosidases, because the native alpha-galactosidase gene, agaT, has been deleted. Growth conditions were established under which the strain was able to utilize melibiose as a single carbohydrate source when harboring a plasmid-encoded agaA1 gene but unable when harboring a plasmid-encoded agaB1 gene. With incubation of the agaB1 plasmid-harboring strain under selective pressure at a restrictive temperature (67 degrees C) in a minimal melibiose medium, spontaneous mutants as well as N-methyl-N'-nitro-N-nitrosoguanidine-induced mutants able to grow on the selective medium were isolated. The mutant alpha-galactosidase genes were amplified by PCR, cloned in Escherichia coli, and sequenced. A single-base substitution that replaces glutamic acid residue 355 with glycine or valine was found in the mutant agaB1 genes. The mutant enzymes displayed the optimum hydrolyzing activity at higher temperatures together with improved catalytic capacity compared to the wild-type enzyme and furthermore showed an enhanced thermal stability. To our knowledge, this is the first report of an in vivo evolution of glycoside-hydrolyzing enzyme and selection within a thermophilic host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号