首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane proteins reside in a structured environment in which some of their residues are accessible to water, some are in contact with alkyl chains of lipid molecules, and some are buried in the protein. Water accessibility of residues may change during folding or function-related structural dynamics. Several techniques based on the combination of pulsed electron paramagnetic resonance (EPR) with site-directed spin labeling can be used to quantify such water accessibility. Accessibility parameters for different residues in major plant light-harvesting complex IIb are determined by electron spin echo envelope modulation spectroscopy in the presence of deuterated water, deuterium contrast in transversal relaxation rates, analysis of longitudinal relaxation rates, and line shape analysis of electron-spin-echo-detected EPR spectra as well as by the conventional techniques of measuring the maximum hyperfine splitting and progressive saturation in continuous-wave EPR. Systematic comparison of these parameters allows for a more detailed characterization of the environment of the spin-labeled residues. These techniques are applicable independently of protein size and require ∼10-20 nmol of singly spin-labeled protein per sample. For a residue close to the N-terminus, in a domain unresolved in the existing x-ray structures of light-harvesting complex IIb, all methods indicate high water accessibility.  相似文献   

2.
Saturation recovery (SR) electron paramagnetic resonance was used to determine the distance between iron and nitroxyl for spin-labeled metmyoglobin variants in low-spin and high-spin states of the Fe(III). The interspin distances were measured by analyzing the effect of the heme iron on the spin-lattice relaxation rates of the nitroxyl spin label using the modified Bloembergen equation for low-spin species, and an analogue of the Bloembergen equation for high-spin species. Insight simulations of the spin-labeled protein structures also were used to determine the interspin distances. The distances obtained by SR for high-spin and low-spin complexes with 15-20 A interspin distances, for low-spin CN(-) and high-spin formate adducts at distances up to about 30 A, and results from Insight calculations were in good agreement. For variants with 25-30 A interspin distances, the distances obtained by SR for the fluoride adducts were shorter than observed for the CN(-) or formate adducts or predicted by Insight simulations. Of the heme axial ligands examined (CN(-), imidazole, F(-), and formate), CN(-) is the best choice for determination of iron-nitroxyl distances in the range of 15-30 A.  相似文献   

3.
Thirteen single-cysteine variants of myoglobin were prepared by overexpression of apoprotein, spin labeling, and reconstitution with hemin. This procedure resulted in a protein with fewer hemichrome impurities than was obtained by an overexpression of holo-protein followed by spin labeling. Coordination of cyanide to the met heme formed low-spin complexes. Iron-nitroxyl interspin distances in the range of 17-30 Å were determined by saturation recovery measurements of the enhancement of the nitroxyl spin lattice relaxation rates between ∼30-140 K, and by spin-echo measurements of the enhancement of spin-spin relaxation rates at 10-30 K. Interspin distances were also calculated, using the molecular modeling program Insight II (Accelrys, San Diego, CA). For most variants, distances determined from the temperature dependence of spin-echo intensities at a pulse spacing of 200 ns agree with distances measured by saturation recovery and calculated with Insight II within about an angstrom, which is within experimental uncertainties. Measurements of interspin distances via spin-spin relaxation enhancement have the advantages that maximum effects are observed for slower metal relaxation rates than are required for spin-lattice relaxation enhancement, and the impact diminishes as r−3 instead of r−6, as with spin-lattice relaxation enhancement, which permits measurements at longer distances.  相似文献   

4.
A DNA-based model system is described for studying electron spin-spin interactions between a paramagnetic metal ion and a nitroxide spin label. The modified base deoxythymidine-EDTA (dT-EDTA) chelates the divalent or trivalent metal ion and produces a new feature in the circular dichroism (CD) spectra that makes it possible to monitor local DNA melting. Based on the results of optical and electron paramagnetic resonance (EPR) experiments, we find that the terminus of the DNA duplex that incorporates dT-EDTA and the spin-label melts at a higher temperature than the rest of the DNA duplex. EPR microwave progressive power saturation experiments performed at 77 K are consistent with the specific binding of Dy(III) at the EDTA site and an intramolecular dipole-dipole interaction between the nitroxide spin-label and the chelated Dy(III). This model system should be suitable for studying the relaxation properties of metal ions by saturation-recovery EPR.  相似文献   

5.
Páli T  Finbow ME  Marsh D 《Biochemistry》1999,38(43):14311-14319
The 16-kDa proteolipid from the hepatopancreas of Nephrops norvegicus belongs to the class of channel proteins that includes the proton-translocation subunit of the vacuolar ATPases. The membranous 16-kDa protein from Nephrops was covalently spin-labeled on the unique cysteine Cys54, with a nitroxyl maleimide, or on the functionally essential glutamate Glu140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). The intensities of the saturation transfer ESR spectra are a sensitive indicator of spin-spin interactions that were used to probe the intramembranous structure and assembly of the spin-labeled 16-kDa protein. Spin-lattice relaxation enhancements by aqueous Ni(2+) ions revealed that the spin label on Glu140 is located deeper within the membrane (around C9-C10 of the lipid chains) than is that on Cys54 (located around C5-C6). In double labeling experiments, alleviation of saturation by spin-spin interactions with spin-labeled lipids indicates that spin labels both on Cys54 and on Glu140 are at least partially exposed to the lipid chains. The decrease in saturation transfer ESR intensity observed with increasing spin-labeling level is evidence of oligomeric assembly of the 16-kDa monomers and is consistent with a protein hexamer. These results determine the locations and orientations of transmembrane segments 2 and 4 of the 16-kDa putative 4-helix bundle and put constraints on molecular models for the hexameric assembly in the membrane. In particular, the crucial DCCD-binding site that is essential for proton translocation appears to contact lipid.  相似文献   

6.
The spin-lattice relaxation times (T(1)) for the reduced quinone acceptors Q(A)(-.) and Q(B)(-.), and the intermediate pheophytin acceptor phi(-.), were measured in native photosynthetic reaction centers (RC) containing a high spin Fe(2+) (S = 2) and in RCs in which Fe(2+) was replaced by diamagnetic Zn(2+). From these data, the contribution of the Fe(2+) to the spin-lattice relaxation of the cofactors was determined. To relate the spin-lattice relaxation rate to the spin-spin interaction between the Fe(2+) and the cofactors, we developed a spin-dimer model that takes into account the zero field splitting and the rhombicity of the Fe(2+) ion. The relaxation mechanism of the spin-dimer involves a two-phonon process that couples the fast relaxing Fe(2+) spin to the cofactor spin. The process is analogous to the one proposed by R. Orbach (Proc. R. Soc. A. (Lond.). 264:458-484) for rare earth ions. The spin-spin interactions are, in general, composed of exchange and dipolar contributions. For the spin dimers studied in this work the exchange interaction, J(o), is predominant. The values of J(o) for Q(A)(-.)Fe(2+), Q(B)(-.)Fe(2+), and phi(-.)Fe(2+) were determined to be (in kelvin) -0.58, -0.92, and -1.3 x 10(-3), respectively. The |J(o)| of the various cofactors (obtained in this work and those of others) could be fitted with the relation exp(-beta(J)d), where d is the distance between cofactor spins and beta(J) had a value of (0.66-0.86) A(-1). The relation between J(o) and the matrix element |V(ij)|(2) involved in electron transfer rates is discussed.  相似文献   

7.
Electron paramagnetic resonance (EPR) power saturation and saturation recovery methods have been used to determine the spin lattice, T1, and spin-spin, T2, relaxation times of P-700+ reaction-center chlorophyll in Photosystem I of plant chloroplasts for 10 K less than or equal to T less than or equal to 100 K. T1 was 200 mus at 100 K and increased to 900 mus at 10 K. T2 was 40 ns at 40 K and increased to 100 ns at 10 K. T1 for 40 K less than or equal to T less than or equal to 100 K is inversely proportional to temperature, which is evidence of a direct-lattice relaxation process. At T = 20 K, T1 deviates from the 1/T dependence, indicating a cross relaxation process with an unidentified paramagnetic species. The individual effects of ascorbate and ferricyanide on T1 of P-700+ were examined: T1 of P-700+ was not affected by adding 10 mM ascorbate to digitonin-treated chloroplast fragments (D144 fragments). The P-700+ relaxation time in broken chloroplasts treated with 10 mM ferricyanide was 4-times shorter than in the untreated control at 40 K. Ferricyanide appears to be relaxing the P-700+ indirectly to the lattice by a cross-relaxation process. The possibility of dipolar-spin broadening of P-700+ due to either the iron sulfur center A or plastocyanin was examined by determining the spin-packet linewidth for P-700+ when center A and plastocyanin were in either the reduced or oxidized states. Neither reduced center A nor oxidized plastocyanin was capable of broadening the spin-packet linewidth of P-700+ signal. The absence of dipolar broadening indicates that both center A and plastocyanin are located at a distance at least 3.0 nm from the P-700+ reaction center chlorophyll. This evidence supports previous hypotheses that the electron donor and acceptor to P-700 are situated on opposite sides of the chloroplast membrane. It is also shown that the ratio of photo-oxidized P-700 to photoreduced centers A and B at low temperature is 2 : 1 if P-700 is monitored at a nonsaturating microwave power.  相似文献   

8.
A Arora  D Marsh 《Biophysical journal》1998,75(6):2915-2922
The change in vertical location of spin-labeled N-biotinyl phosphatidylethanolamine in fluid-phase dimyristoyl phosphatidylcholine bilayer membranes, on binding avidin to the biotinyl headgroup, has been investigated by progressive saturation electron spin resonance measurements. Spin-labeled phospholipids were present at a concentration of 1 mol%, relative to total membrane lipids. For avidin-bound N-biotinyl phosphatidylethanolamine spin-labeled on the 8 C atom of the sn-2 chain, the relaxation enhancement induced by 30 mM Ni2+ ions confined to the aqueous phase was 2.5 times that induced by saturating molecular oxygen, which is preferentially concentrated in the hydrophobic core of the membrane. For phosphatidylcholine also spin-labeled at the 8 position of the sn-2 chain, this ratio was reversed: the relaxation enhancement by Ni2+ ions was half that induced by molecular oxygen. In the absence of avidin, the enhancement by either relaxant was the same for both spin-labeled phospholipids. For a double-labeled system, in which both N-biotinyl phosphatidylethanolamine and phosphatidylcholine were spin-labeled on the 12 C atom of the sn-2 chain, the relaxation rate in the absence of avidin was greater than that predicted from linear additivity of the corresponding singly labeled systems, because of mutual spin-spin interactions between the two labeled lipid species. On binding of avidin to the N-biotinyl phosphatidylethanolamine, this relaxation enhancement by mutual spin-spin interaction was very much decreased. These results indicate that, on binding of avidin to the lipid headgroup, N-biotinyl phosphatidylethanolamine is lifted vertically within the membrane, relative to the phosphatidylcholine host lipids. The specific binding of avidin to N-biotinyl phosphatidylethanolamine parallels the liftase activity proposed for activator proteins associated with the action of certain gangliosidases.  相似文献   

9.
Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T1 of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T1 is longer, no modulation of the coupling between metal centers can be detected.  相似文献   

10.
We have measured the electronic spin lattice relaxation time T1 in the temperature range 4 K-10 K, by microwave power saturation on the 3Fe ferredoxins from Desulfovibrio gigas and Azotobacter vinelandii. The comparison with the results previously obtained on other iron sulfur proteins emphasizes the particularly fast relaxing properties of the E.P.R. signal in 3Fe ferredoxins. These results support the models of the active site which predict very low lying excited levels.  相似文献   

11.
Electron spin resonance (ESR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful tool for determining protein structure, dynamics and interactions. We report here a method for determining interactions between spin labels and paramagnetic relaxation agents, which is performed under subsaturating conditions. The low microwave-field amplitude employed (h(1)<0.36 G) only requires standard, commercially available ESR equipment. The effect of relaxation enhancement on the spin-spin-relaxation time, T(2e), is measured by this method, and compared to classical progressive power saturation performed on a free spin label, (1-oxyl-2,2,5,5-tetramethyl-Delta(3)-pyrroline-3-methyl)methanethiosulfonate (MTSL), and a spin-labeled protein (Thermomyces lanuginosa lipase, TLL-I252C), employing the water-soluble relaxation agent chromium(III) oxalate (Crox) in concentrations between 0-10 mM. The low-amplitude theory showed excellent agreement with that of classical power saturation in quantifying Crox-induced relaxation enhancement. Low-amplitude measurements were then performed using a standard resonator, with Crox, on 11 spin-labeled TLL mutants displaying rotational correlation times in the motional narrowing regime. All spin-labeled proteins exhibited significant changes in T(2e). We postulate that this novel method is especially suitable for studying moderately immobilized spin labels, such as those positioned at exposed sites in a protein. This method should prove useful for research groups with access to any ESR instrumentation.  相似文献   

12.
Ferritin stores iron within a hollow protein shell as a polynuclear Fe(III) hydrous oxide core. Although iron uptake into ferritin has been studied previously, the early stages in the creation of the core need to be clarified. These are dealt with in this paper by using M?ssbauer spectroscopy, a technique that enables several types of Fe(II) and Fe(III) to be distinguished. Systematic M?ssbauer studies were performed on samples prepared by adding 57Fe(II) atoms to apoferritin as a function of pH (5.6-7.0), n [the number of Fe/molecule (4-480)], and tf (the time the samples were held at room temperature before freezing). The measurements made at 4.1 and 90 K showed that for samples with n less than or equal to 40 at pH greater than or equal to 6.25 all iron was trivalent at tf = 3 min. Four different Fe(III) species were identified: solitary Fe(III) atoms giving relaxation spectra, which can be identified with the species observed before by EPR and UV difference spectroscopy; oxo-bridged dimers giving doublet spectra with large splitting, observed for the first time in ferritin; small Fe(III) clusters giving doublets of smaller splitting and larger antiferromagnetically coupled Fe(III) clusters, similar to those found previously in larger ferritin iron cores, which, for samples with n greater than or equal to 40, gave magnetically split spectra at 4.1 K. Both solitary Fe(III) and dimers diminished with time, suggesting that they are intermediates in the formation of the iron core. Two kinds of divalent iron were distinguished for n = 480, which may correspond to bound and free Fe(II).  相似文献   

13.
The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1–6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR.  相似文献   

14.
Electron-electron double resonance measurements were carried out on milk xanthine oxidase (xanthine:oxygen oxidoreductase EC 1.2.3.2) and the spectra obtained supported a previous model, based on EPR data, proposing a spin-spin interaction between unpaired electrons associated with Fe-S and Mo. The technique demonstrated that the additional apparently isotropic, splitting in the Mo EPR spectra observed at low temperature is produced by a single site giving two spectra interconverting at a rate consistent with the Fe-S spin lattice relaxation time. Other data concerning the model and the relaxation behaviour of the species are discussed.  相似文献   

15.
Permeation of oxygen into membranes is relevant not only to physiological function, but also to depth determinations in membranes by site-directed spin labeling. Spin-lattice (T(1)) relaxation enhancements by air or molecular oxygen were determined for phosphatidylcholines spin labeled at positions (n = 4-14, 16) of the sn-2 chain in fluid membranes of dimyristoyl phosphatidylcholine, by using nonlinear continuous-wave electron paramagnetic resonance (EPR). Both progressive saturation and out-of-phase continuous-wave EPR measurements yield similar oxygen permeation profiles. With pure oxygen, the T(2)-relaxation enhancements determined from homogeneous linewidths of the linear EPR spectra are equal to the T(1)-relaxation enhancements determined by nonlinear EPR. This confirms that both relaxation enhancements occur by Heisenberg exchange, which requires direct contact between oxygen and spin label. Oxygen concentrates in the hydrophobic interior of phospholipid bilayer membranes with a sigmoidal permeation profile that is the inverse of the polarity profile established earlier for these spin-labeled lipids. The shape of the oxygen permeation profile in fluid lipid membranes is controlled partly by the penetration of water, via the transmembrane polarity profile. At the protein interface of the KcsA ion channel, the oxygen profile is more diffuse than that in fluid lipid bilayers.  相似文献   

16.
Phase memory relaxation times (T(M) or T(2)) of spin labels in human carbonic anhydrase II (HCA II) are reported. Spin labels (N-(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidinyl)iodoacetamide, IPSL) were introduced at cysteines, by site-directed mutagenesis at seven different positions in the protein. By two pulse electron paramagnetic resonance (EPR), electron spin echo decays at 45 K are measured and fitted by stretched exponentials, resulting in relaxation parameters T(M) and x. T(M) values of seven positions are between 1.6 micros for the most buried residue (L79C) and 4.7 micros for a residue at the protein surface (W245C). In deuteriated buffer, longer T(M) are found for all but the most buried residues (L79C and W97C), and electron spin echo envelop modulation (ESEEM) of deuterium nuclei is observed. Different deuterium ESEEM patterns for W95C and W16C (surface residue) indicate differences in the local water concentration, or accessibility, of the spin label by deuterium. We propose T(M) as a parameter to determine the spin label location in proteins. Furthermore, these systems are interesting for studying the pertaining relaxation mechanism.  相似文献   

17.
Continuous wave (cw) X-band EPR spectra at approximately 90 K were obtained for iron-transferrin-anion complexes with 18 anions. Each anion had a carboxylate group and at least one other polar moiety. As the second polar group was varied from hydroxyl to carbonyl to amine to carboxylate, the EPR spectra changed from a dominant signal at g' approximately 4.3 with a second smaller peak at g' approximately 9 to a broad signal with intensity between g' approximately 5 and 7. Computer simulation indicated that the changes in the EPR spectra were due to changes in the zero field splitting parameter ratio, E/D, from approximately 1/3 for carbonate anion to approximately 0.04 for malonate anion. Observation of iron-13C coupling in the electron spin echo envelope modulation (ESEEM) for iron transferrin [1-13C]pyruvate indicated that the carboxylate group was bound to the iron. It is proposed that all of the anions behave as bidentate ligands, with coordination to the iron through both the carboxylate and proximal groups, and the carboxyl group serves as a bridge between the iron and a positively charged group on the protein.  相似文献   

18.
The electron spin relaxation of iron-sulphur centres and ubisemiquinones of plant mitochondria was studied by microwave power saturation of the respective EPR signals. In the microwave power saturation technique, the experimental saturation data were fitted by a least-squares procedure to a saturation function which is characterized by the power for half-saturation (P1/2) and the inhomogeneity parameter (b). Since the theoretical saturation curves were based on a one-electron spin system, it became possible to differentiate between EPR signals of iron-sulphur centres which have similar g values but different P1/2 values. If the difference in the P1/2 values of the overlapped components was small, no significant deviation from these theoretical saturation curves was observed, as shown for the overlapped signals of centre S-3 and the Ruzicka centre of mung bean mitochondria. By contrast, the microwave power saturation data for the g = 1.93 signal (17--26 K) of Arum maculatum submitochondrial particles reduced by succinate could not be fitted using one-electron saturation curves. Reduction by NADH resulted in a stronger deviation. Since the iron-sulphur centres of Complex I were present only in an unusually low concentration in A. maculatum mitochondria, it was proposed that an iron-sulphur centre of the external NADH dehydrogenase contributes to the spectrum of centre S-1. For mung bean mitochondria, the g = 1.93 signal below 20 K could be attributed mainly to centre N-2. The microwave power saturation technique was also suitable for detecting magnetic interactions between paramagnetic centres. From the saturation data of the complex spectrum attributable to centre S-3 and an interacting ubisemiquinone pair in mung bean mitochondria (oxidized state) followed that centre S-3 has a faster electron spin relaxation than the ubisemiquinone molecules. It is noteworthy that the differences in the relaxation rates were maintained despite the interaction between centre S-3 and the ubisemiquinones. Furthermore, a relaxation enhancement was observed for centre S-1 of A. maculatum submitochondrial particles upon reduction of centre S-2 by dithionite. This indicated a magnetic interaction between centres S-1 and S-2.  相似文献   

19.
Apocytochrome c derived from horse heart cytochrome c was spin-labeled on the cysteine residue at position 14 or 17 in the N-terminal region of the primary sequence, and cytochrome c from yeast was spin-labeled on the single cysteine residue at sequence position 102 in the C-terminal region. The spin-labeled apocytochrome c and cytochrome c were bound to fluid bilayers composed of different negatively charged phospholipids that also contained phospholipid probes that were spin-labeled either in the headgroup or at different positions in the sn-2 acyl chain. The location of the spin-labeled cysteine residues on the lipid-bound proteins was determined relative to the spin-label positions in the different spin-labeled phospholipids by the influence of spin-spin interactions on the microwave saturation properties of the spin-label electron spin resonance spectra. The enhanced spin relaxation observed in the doubly labeled systems arises from Heisenberg spin exchange, which is determined by the accessibility of the spin-label group on the protein to that on the lipid. It is found that the labeled cysteine groups in horse heart apocytochrome c are located closest to the 14-C atom of the lipid acyl chain when the protein is bound to dimyristoyl- or dioleoyl-phosphatidylglycerol, and to that of the 5-C atom when the protein is bound to a dimyristoylphosphatidylglycerol/dimyristoylphosphatidylcholine (15:85 mol/mol mixture. On binding to dioleoylphosphatidylglycerol, the labeled cysteine residue in yeast cytochrome c is located closest to the phospholipid headgroups but possibly between the polar group region and the 5-C atom of the acyl chains. These data determine the extent to which the different regions of the proteins are able to penetrate negatively charged phospholipid bilayers.  相似文献   

20.
The electron spin relaxation time of high spin Fe(III), taus, was determined from the frequency dependence (5-100 MHz) of the longitudinal proton relaxation rates of water in solutions of catalase, metmyoglobin and acid ferricytochrome c. In all three high-spin heme proteins the relaxation rates incrased below 25 MHz, while no frequency dependence was observed above that frequency. The results are interpreted by assuming that taus, which modulates the dipolar interaction between the unpaired electrons of the iron and the water protons, is frequently independent. Its value was determined to be (6 +/- 1) - 10(-11) s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号