首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to detect an incoming visual stimulus is enhanced by knowledge of stimulus location (orienting of visuospatial attention). Although the brain mechanisms at the basis of this enhancement are not yet fully clarified, there is evidence that orienting of attention is accompanied by the activation of oculomotor circuits. It remains unclear, however, whether this oculomotor activity is an epiphenomenon or is functionally related to the attentional process. Attentional benefits are usually measured by the classical Posner paradigm. When subjects fixate centrally and are requested to detect a visual stimulus that could appear in an attended or unattended location, they react faster to stimuli appearing in the attended one. Here, we demonstrate that in monocular vision visuospatial attention was significantly modulated by the position of the eye in the orbit. When the screen was placed 40 degrees to the right or to the left of subjects' sagittal plane, attentional benefits for stimuli appearing in subjects' temporal spatial hemifield dramatically decayed, even if the retinal stimulation was exactly the same as in the classical paradigm. The finding that eyes and attention show a common limit stop point supports their close functional coupling.  相似文献   

2.
Eye position influences auditory responses in primate inferior colliculus   总被引:9,自引:0,他引:9  
Groh JM  Trause AS  Underhill AM  Clark KR  Inati S 《Neuron》2001,29(2):509-518
We examined the frame of reference of auditory responses in the inferior colliculus in monkeys fixating visual stimuli at different locations. Eye position modulated the level of auditory responses in 33% of the neurons we encountered, but it did not appear to shift their spatial tuning. The effect of eye position on auditory responses was substantial-comparable in magnitude to that of sound location. The eye position signal appeared to interact with the auditory responses in at least a partly multiplicative fashion. We conclude that the representation of sound location in primate IC is distributed and that the frame of reference is intermediate between head- and eye-centered coordinates. The information contained in these neurons appears to be sufficient for later neural stages to calculate the positions of sounds with respect to the eyes.  相似文献   

3.
Neural encoding of temporal speech features is a key component of acoustic and phonetic analyses. We examined the temporal encoding of the syllables /da/ and /ta/, which differ along the temporally based, phonetic parameter of voice onset time (VOT), in primary auditory cortex (A1) of awake monkeys using concurrent multilaminar recordings of auditory evoked potentials (AEP), the derived current source density, and multiunit activity. A general sequence of A1 activation consisting of a lamina-specific profile of parallel and sequential excitatory and inhibitory processes is described. VOT is encoded in the temporal response patterns of phase-locked activity to the periodic speech segments and by “on” responses to stimulus and voicing onset. A transformation occurs between responses in the thalamocortical (TC) fiber input and A1 cells. TC fibers are more likely to encode VOT with “on” responses to stimulus onset followed by phase-locked responses during the voiced segment, whereas A1 responses are more likely to exhibit transient responses both to stimulus and voicing onset. Relevance to subcortical speech processing, the human AEP and speech psychoacoustics are discussed. A mechanism for categorical differentiation of voiced and unvoiced consonants is proposed.  相似文献   

4.
Petkov CI  O'Connor KN  Sutter ML 《Neuron》2007,54(1):153-165
When interfering objects occlude a scene, the visual system restores the occluded information. Similarly, when a sound of interest (a "foreground" sound) is interrupted (occluded) by loud noise, the auditory system restores the occluded information. This process, called auditory induction, can be exploited to create a continuity illusion. When a segment of a foreground sound is deleted and loud noise fills the missing portion, listeners incorrectly report hearing the foreground continuing through the noise. Here we reveal the neurophysiological underpinnings of illusory continuity in single-neuron responses from awake macaque monkeys' primary auditory cortex (A1). A1 neurons represented the missing segment of occluded tonal foregrounds by responding to discontinuous foregrounds interrupted by intense noise as if they were responding to the complete foregrounds. By comparison, simulated peripheral responses represented only the noise and not the occluded foreground. The results reveal that many A1 single-neuron responses closely follow the illusory percept.  相似文献   

5.
6.
Mirror-symmetric tonotopic maps in human primary auditory cortex   总被引:17,自引:0,他引:17  
Understanding the functional organization of the human primary auditory cortex (PAC) is an essential step in elucidating the neural mechanisms underlying the perception of sound, including speech and music. Based on invasive research in animals, it is believed that neurons in human PAC that respond selectively with respect to the spectral content of a sound form one or more maps in which neighboring patches on the cortical surface respond to similar frequencies (tonotopic maps). The number and the cortical layout of such tonotopic maps in the human brain, however, remain unknown. Here we use silent, event-related functional magnetic resonance imaging at 7 Tesla and a cortex-based analysis of functional data to delineate with high spatial resolution the detailed topography of two tonotopic maps in two adjacent subdivisions of PAC. These maps share a low-frequency border, are mirror symmetric, and clearly resemble those of presumably homologous fields in the macaque monkey.  相似文献   

7.
The cochleotopic organization of the primary auditory cortex was studied by the evoked potentials method in cats anesthetized with pentobarbital. Two foci of maximal activity (dorsal and ventral) were found in the primary auditory cortex of 85% of animals during local electrical stimulation of different areas of the cochlea. Analysis of projection maps of the primary auditory cortex of the cats showed that different areas of the cochlea are presented in this region disproportionately. The basal portion projects to a larger cortical surface than the middle and apical portions together, evidence of inequality of representation of different parts of the receptor apparatus of the cochlea in the primary auditory area. Considerable differences were observed in the arrangement of projections of the cochlea in the primary auditory cortex of different animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 117–124, March–April, 1979.  相似文献   

8.
Chen LM  Friedman RM  Roe AW 《生理学报》2008,60(5):664-668
While the activation of primary somatosensory (SI) cortex during pain perception is consistently reported in functional imaging studies on normal subjects and chronic pain patients, the specific roles of SI, particularly the subregions within SI, in the processing of sensory aspects of pain are still largely unknown. Using optical imaging of intrinsic signal (OIS) and single unit electrophysiology, we studied cortical activation patterns within SI cortex (among Brodmann areas 3a, 3b and 1) and signal amplitude changes to various intensities of non-nociceptive, thermal nociceptive and mechanical nociceptive stimulation of individual distal finerpads in anesthetized squirrel monkeys. We have demonstrated that areas 3a and 1 are preferentially involved in the processing of nociceptive information while areas 3b and 1 are preferentially activated in the processing of non-nociceptive (touch) information. Nociceptive activations of individual fingerpad were organized topographically suggesting that nociceptive topographic map exits in areas 3a and 1. Signal amplitude was enhanced to increasing intensity of mechanical nociceptive stimuli in areas 3a, 3b and 1. Within area 1, nociceptive response co-localizes with the non-nociceptive response. Therefore, we hypothesize that nocicepitve information is area-specifically represented within SI cortex, in which nociceptive inputs are preferentially represented in areas 3a and 1 while non-nociceptive inputs are preferentially represented in areas 3b and 1.  相似文献   

9.
Recent anatomical, physiological, and neuroimaging findings indicate multisensory convergence at early, putatively unisensory stages of cortical processing. The objective of this study was to confirm somatosensory-auditory interaction in A1 and to define both its physiological mechanisms and its consequences for auditory information processing. Laminar current source density and multiunit activity sampled during multielectrode penetrations of primary auditory area A1 in awake macaques revealed clear somatosensory-auditory interactions, with a novel mechanism: somatosensory inputs appear to reset the phase of ongoing neuronal oscillations, so that accompanying auditory inputs arrive during an ideal, high-excitability phase, and produce amplified neuronal responses. In contrast, responses to auditory inputs arriving during the opposing low-excitability phase tend to be suppressed. Our findings underscore the instrumental role of neuronal oscillations in cortical operations. The timing and laminar profile of the multisensory interactions in A1 indicate that nonspecific thalamic systems may play a key role in the effect.  相似文献   

10.
The amplitude and pitch fluctuations of natural soundscapes often exhibit "1/f spectra", which means that large, abrupt changes in pitch or loudness occur proportionally less frequently in nature than gentle, gradual fluctuations. Furthermore, human listeners reportedly prefer 1/f distributed random melodies to melodies with faster (1/f0) or slower (1/f2) dynamics. One might therefore suspect that neurons in the central auditory system may be tuned to 1/f dynamics, particularly given that recent reports provide evidence for tuning to 1/f dynamics in primary visual cortex. To test whether neurons in primary auditory cortex (A1) are tuned to 1/f dynamics, we recorded responses to random tone complexes in which the fundamental frequency and the envelope were determined by statistically independent "1/f(gamma) random walks," with gamma set to values between 0.5 and 4. Many A1 neurons showed clear evidence of tuning and responded with higher firing rates to stimuli with gamma between 1 and 1.5. Response patterns elicited by 1/f(gamma) stimuli were more reproducible for values of gamma close to 1. These findings indicate that auditory cortex is indeed tuned to the 1/f dynamics commonly found in the statistical distributions of natural soundscapes.  相似文献   

11.
12.
Inhibition plays an essential role in shaping and refining the brain's representation of sensory stimulus attributes. In primary auditory cortex (A1), so-called "sideband" inhibition helps to sharpen the tuning of local neuronal responses. Several distinct types of anatomical circuitry could underlie sideband inhibition, including direct thalamocortical (TC) afferents, as well as indirect intracortical mechanisms. The goal of the present study was to characterize sideband inhibition in A1 and to determine its mechanism by analyzing laminar profiles of neuronal ensemble activity. Our results indicate that both lemniscal and nonlemniscal TC afferents play a role in inhibitory responses via feedforward inhibition and oscillatory phase reset, respectively. We propose that the dynamic modulation of excitability in A1 due to the phase reset of ongoing oscillations may alter the tuning of local neuronal ensembles and can be regarded as a flexible overlay on the more obligatory system of lemniscal feedforward type responses.  相似文献   

13.
Scapular position affects shoulder mobility, which plays an important role in the upper limb adaptations in primates. However, currently available data on scapular position are unsatisfactory because of the failure to simultaneously consider the relative dimensions of all the three skeletal elements of the shoulder girdle, i.e. the clavicle, the scapula and the thorax. In the present study, the clavicular length and the scapular spine length were measured on preserved cadavers, and the dorsoventral thoracic diameter was measured on scaled radiographs of a wide range of primates, permitting a quantitative comparison of scapular position among primates. It was found that arboreal monkeys have a more dorsally situated scapula than terrestrial ones, but the same difference was not found between terrestrial and arboreal prosimians. Hominoids were found to have the most dorsally situated scapula. Contrary to the slow climbing theory of hominoid evolution, which tries to explain most postcranial specializations of hominoids as adaptations for slow climbing, the scapulae of slow-climbing lorines and Alouatta are much less dorsal than those of the hominoids.  相似文献   

14.
15.
Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences--and thus distinct physiological functions--for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed.  相似文献   

16.
Functional topography of cat primary auditory cortex: response latencies   总被引:6,自引:0,他引:6  
Minimum onset latency (Lmin) of single- and multiple-unit responses were mapped in the primary auditory cortex (AI) of barbiturate-anesthetized cats. Contralateral Lmin for multiple units was non-homogeneously distributed along the dorso-ventral/isofrequency axis of the AI. Responses with shorter latencies were more often located in the central, more sharply tuned region while longer latencies were more frequently encountered in the dorsal and ventral portions of the AI. For single units, a large scatter of Lmin values was found throughout the extent of the AI including cortical depth. The relationship between Lmin and previously reported spectral, intensity and temporal parameters was analyzed and revealed statistically significant correlations between minimum onset latency and the following response properties in some but not all studied animals: sharpness of tuning of a frequency response area 10 dB above threshold, broadband transient response, strongest response level, monotonicity of rate/level functions, dynamic range, and preferred frequency modulation sweep direction. This analysis suggests that Lmin is determined by several independent factors and that the prediction of Lmin based on relationships with other spectral and temporal response properties is inherently weak. The spatial distribution and the functional relationship between these response parameters may provide an important aspect of the time-based cortical representation of specific features in the animal's natural environment. Accepted: 13 August 1997  相似文献   

17.
A set of impulsive transient signals has been synthesized for earphone delivery whose waveform and amplitude spectra, measured at the eardrum, mimic those of sounds arriving from a free-field source. The complete stimulus set forms a "virtual acoustic space" (VAS) for the cat. VAS stimuli are delivered via calibrated earphones sealed into the external meatus in cats under barbiturate anesthesia. Neurons recorded extracellularly in primary (AI) auditory cortex exhibit sensitivity to the direction of sound in VAS. The aggregation of effective sound directions forms a virtual space receptive field (VSRF). At about 20 dB above minimal threshold, VSRFs recorded in otherwise quiet and anechoic space fall into categories based on spatial dimension and location. The size, shape and location of VSRFs remain stable over many hours of recording and are found to be shaped by excitatory and inhibitory interactions of activity arriving from the two ears. Within the VSRF response latency and strength vary systematically with stimulus direction. In an ensemble of such neurons these functional gradients provide information about stimulus direction, which closely accounts for a human listener's spatial acuity. Raising stimulus intensity, introducing continuous background noise or presenting a conditioning stimulus all influence the extent of the VSRF but leave intact the gradient structure of the field. These and other findings suggest that such functional gradients in VSRFs of ensembles of AI neurons are instrumental in coding sound direction and robust enough to overcome interference from competing environmental sounds.  相似文献   

18.
We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号