首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome c maturation process is carried out in the bacterial periplasm, where some specialized thiol‐disulfide oxidoreductases work in close synergy for the correct reduction of oxidized apocytochrome before covalent heme attachment. We present a structural and functional characterization of the soluble periplasmic domain of CcmG from the opportunistic pathogen P. aeruginosa (Pa‐CcmG), a component of the protein machinery involved in cyt c maturation in gram‐negative bacteria. X‐ray crystallography reveals that Pa‐CcmG is a TRX‐like protein; high‐resolution crystal structures show that the oxidized and the reduced forms of the enzyme are identical except for the active‐site disulfide. The standard redox potential was calculated to be E0′ = ?0.213 V at pH 7.0; the pKa of the active site thiols were pKa = 6.13 ± 0.05 for the N‐terminal Cys74 and pKa = 10.5 ± 0.17 for the C‐terminal Cys77. Experiments were carried out to characterize and isolate the mixed disulfide complex between Pa‐CcmG and Pa‐CcmH (the other redox active component of System I in P. aeruginosa). Our data indicate that the target disulfide of this TRX‐like protein is not the intramolecular disulfide of oxidized Pa‐CcmH, but the intermolecular disulfide formed between Cys28 of Pa‐CcmH and DTNB used for the in vitro experiments. This observation suggests that, in vivo, the physiological substrate of Pa‐CcmG may be the mixed‐disulfide complex between Pa‐CcmH and apo‐cyt. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
DsbD from Escherichia coli transports two electrons from cytoplasmic thioredoxin to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of an N-terminal periplasmic domain (nDsbD), a C-terminal periplasmic domain, and a central transmembrane domain. Each domain possesses two cysteines required for electron transport. Herein, we demonstrate fast (3.9 x 10(5) M(-1)s(-1)) and direct disulfide exchange between nDsbD and CcmG, a highly specific disulfide reductase essential for cytochrome c maturation. We determined the crystal structure of the disulfide-linked complex between nDsbD and the soluble part of CcmG at 1.94 A resolution. In contrast to the other two known complexes of nDsbD with target proteins, the N-terminal segment of nDsbD contributes to specific recognition of CcmG. This and other features, like the possibility of using an additional interaction surface, constitute the structural basis for the adaptability of nDsbD to different protein substrates.  相似文献   

3.
M C Liu  W J Payne  H D Peck  Jr    J LeGall 《Journal of bacteriology》1983,154(1):278-286
Pseudomonas perfectomarinus (ATCC 14405) is a facultative anaerobe capable of either oxygen respiration or anaerobic nitrate respiration, i.e., denitrification. A comparative study of the electron transfer components of cells revealed five c-type cytochromes and cytochrome cd in the soluble fraction from anaerobically grown cells and four c-type cytochromes in the soluble fraction from aerobically grown cells. Purification procedures yielded three c-type cytochromes (designated c-551, c-554, and acidic c-type) from both kinds of cells as indicated by similarities in absorption spectra, molecular weight, and electrophoretic mobility. Cytochrome cd, a diheme c-type cytochrome (cytochrome c-552), and a split-alpha c-type cytochrome were recovered only from anaerobically grown cells. A c-type cytochrome with a low ratio of alpha to beta absorption peak heights was uniquely present in the aerobically grown cells. Liquid N2 temperature absorption spectroscopy on the membrane fraction from anaerobically grown cells revealed residual cytochrome cd as well as differences in the relative amounts of c-type and b-type cytochromes in membranes prepared from cells grown under the two different conditions.  相似文献   

4.
In gram-negative bacteria, like Rhodobacter capsulatus, about 10 membrane-bound components (CcmABCDEFGHI and CcdA) are required for periplasmic maturation of c-type cytochromes. These components perform the chaperoning and thio-oxidoreduction of the apoproteins as well as the delivery and ligation of the heme cofactors. In the absence of any of these components, including CcmI, proposed to act as an apocytochrome c chaperone, R. capsulatus does not have the ability to produce holocytochromes c or consequently to exhibit photosynthetic growth and cytochrome cbb3 oxidase activity. Previously, we have demonstrated that null mutants of CcmI partially overcome cytochrome c deficiency phenotypes upon overproduction of the CcmF-R. capsulatus CcmH (CcmF-CcmH(Rc)) couple in a growth medium-dependent manner and fully bypass these defects by additional overproduction of CcmG. Here, we show that overproduction of the CcmF-CcmH(Rc) couple and overproduction of the N-terminal membrane-spanning segment of CcmI (CcmI-1) have similar suppression effects of cytochrome c maturation defects in CcmI-null mutants. Likewise, additional overproduction of CcmG, the C-terminal periplasmic segment of CcmI (CcmI-2), or even of apocytochrome c2 also provides complementation abilities similar to those of these mutants. These results indicate that the two segments of CcmI have different functions and support our earlier findings that two independent steps are required for full recovery of the loss of CcmI function. We therefore propose that CcmI-1 is part of the CcmF-CcmH(Rc)-dependent heme ligation, while CcmI-2 is involved in the CcdA- and CcmG-dependent apoprotein thioreduction steps, which intersect at the level of CcmI during cytochrome c biogenesis.  相似文献   

5.
A new member of the family of periplasmic protein thiol:disulfide oxidoreductases, CcmG (also called DsbE), was characterized with regard to its role in cytochrome c maturation in Escherichia coli. The CcmG protein was shown to be membrane bound, facing the periplasm with its C-terminal, hydrophilic domain. A chromosomal, nonpolar in-frame deletion in ccmG resulted in the complete absence of all c-type cytochromes. Replacement of either one or both of the two cysteine residues of the predicted active site in CcmG (WCPTC) led to low but detectable levels of Bradyrhizobium japonicum holocytochrome c550 expressed in E. coli. This defect, but not that of the ccmG null mutant, could be complemented by adding low-molecular-weight thiol compounds to growing cells, which is in agreement with a reducing function for CcmG.  相似文献   

6.
Cloning and sequencing of the Paracoccus denitrificans ccmG gene indicates that it codes for a periplasmic protein–disulphide oxidoreductase; the presence of the sequence Cys-Pro-Pro-Cys at the CcmG active site suggests that it may act in vivo to reduce disulphide bonds rather than to form them. A CcmG–PhoA fusion confirmed the periplasmic location. Disruption of the ccmG gene resulted in not only the expected phenotype of pleiotropic deficiency in c -type cytochromes, but also loss of spectroscopically detectable cytochrome aa 3, cytochrome c oxidase and ascorbate/TMPD oxidase activities; there was also an enhanced sensitivity to growth inhibition by some component of rich media and by oxidized thiol compounds. Dithiothreitol promoted the growth of the ccmG mutant on rich media and substantially restored spectroscopically detectable cytochrome aa 3 and cytochrome c oxidase activity, although it did not restore c -type cytochrome biogenesis. Assembly of the disulphide-bridged proteins methanol dehydrogenase and Escherichia coli alkaline phosphatase was unaffected in the ccmG mutant. It is proposed that P. denitrificans CcmG acts in vivo to reduce protein–disulphide bonds in certain protein substrates including c -type cytochrome polypeptides and/or polypeptides involved in c -type cytochrome biogenesis.  相似文献   

7.
Tian C  Gao P  Zheng Y  Yue W  Wang X  Jin H  Chen Q 《Cell research》2008,18(4):458-471
lntracellular redox homeostasis plays a critical role in determining tumor cells' sensitivity to drug-induced apoptosis. Here we investigated the role of thioredoxin-1 (TRX1), a key component of redox regulation, in arsenic trioxide (AS2O3)-induced apoptosis. Over-expression of wild-type TRX1 in HepG2 cells led to the inhibition of As2O3-induced cytochrome c (cyto c) release, caspase activation and apoptosis, and down-regulation of TRX1 expression by RNAi sensitized HepG2 cells to As2O3-induced apoptosis. Interestingly, mutation of the active site of TRX1 from Cys^32/35 to Ser^32/35 converted this molecule from an apoptotic protector to an apoptotic promoter. In an effort to understand the mechanisms of this conversion, we used isolated mitochondria from mouse liver and found that recombinant wild-type TRX1 could protect mitochondria from the apoptotic changes. In contrast, the mutant form of TRX1 alone elicited mitochondria-related apoptotic changes, including the mitochondrial permeability transition pore (mPTP) opening, loss of mitochondrial membrane potential, and cyto c release from mitochondria. These apoptotic effects were inhibited by cyclosporine A (CsA), indicating that mutant TRX1 targeted to mPTP. Alteration of TRX1 from its reduced form to oxidized form in vivo by 2,4-dinitrochlorobenzene (DNCB), a specific inhibitor ofTRX reductase, also sensitized HepG2 cells to As203-induced apoptosis. These data suggest that TRX1 plays a central role in regulating apoptosis by blocking cyto c release, and inactivation of TRX1 by either mutation or oxidization of the active site cysteines may sensitize tumor cells to As2O3-induced apoptosis.  相似文献   

8.
We have determined the 1.8 A X-ray crystal structure of a monoheme c-type cytochrome, cytochrome P460, from Nitrosomonas europea. The chromophore possesses unusual spectral properties analogous to those of the catalytic heme P460 of hydroxylamine oxidoreductase (HAO), the only known heme in biology to withdraw electrons from an iron-coordinated substrate. The analysis reveals a homodimeric structure and elucidates a new c-type cytochrome fold that is predominantly beta-sheet. In addition to the two cysteine thioether links to the porphyrin typical of c-type hemes, there is a third proteinaceous link involving a conserved lysine. The covalent bond is between the lysine side-chain nitrogen and the 13'-meso carbon of the heme, which, following cross-link formation, is sp3-hybridized, demonstrating the loss of conjugation at this position within the porphyrin. The structure has implications for the analogous tyrosine-heme meso carbon cross-link observed in HAO.  相似文献   

9.
A c-type cytochrome from Hydrogenomonas eutropha was purified 150-fold by butanol extraction, ammonium sulfate precipitation, and column chromatography. Three distinct c-type cytochromes were recovered which did not bind with either carbon monoxide or cyanide and hence did not appear to be denatured. Polyacrylamide gel electrophoresis indicated that one protein was acidic and the other two were basic. The acidic cytochrome c had a sedimentation coefficient of 3.46. Its amino acid composition was not markedly different from other bacterial cytochromes, but relative to mammalian cytochromes c it was low in lysine, threonine, and isoleucine and high in alanine and valine.  相似文献   

10.
Cytochrome f from the photosynthetic cytochrome b(6)f complex is unique among c-type cytochromes in its fold and heme ligation. The 1. 9-A crystal structure of the functional, extrinsic portion of cytochrome f from the thermophilic cyanobacterium Phormidium laminosum demonstrates that an unusual buried chain of five water molecules is remarkably conserved throughout the biological range of cytochrome f from cyanobacteria to plants [Martinez et al. (1994) Structure 2, 95-105]. Structure and sequence conservation of the cytochrome f extrinsic portion is concentrated at the heme, in the buried water chain, and in the vicinity of the transmembrane helix anchor. The electrostatic surface potential is variable, so that the surface of P. laminosum cytochrome f is much more acidic than that from turnip. Cytochrome f is unrelated to cytochrome c(1), its functional analogue in the mitochondrial respiratory cytochrome bc(1) complex, although other components of the b(6)f and bc(1) complexes are homologous. Identical function of the two complexes is inferred for events taking place at sites of strong sequence conservation. Conserved sites throughout the entire cytochrome b(6)f/bc(1) family include the cluster-binding domain of the Rieske protein and the heme b and quinone-binding sites on the electrochemically positive side of the membrane within the b cytochrome, but not the putative quinone-binding site on the electrochemically negative side.  相似文献   

11.
A key component of the oxidative biogeochemical sulphur cycle involves the utilization by bacteria of reduced inorganic sulphur compounds as electron donors to photosynthetic or respiratory electron transport chains. The SoxAX protein of the photosynthetic bacterium Rhodovulum sulfidophilum is a heterodimeric c-type cytochrome that is involved in the oxidation of thiosulphate and sulphide. The recently solved crystal structure of the SoxAX complex represents the first structurally characterized example of a productive electron transfer complex between haemoproteins where both partners adopt the c-type cytochrome fold. The packing of c-type cytochrome domains both within SoxA and at the interface between the subunits of the complex has been compared with other examples and found to be unique.  相似文献   

12.
CcmH (cytochromes c maturation protein H) is an essential component of the assembly line necessary for the maturation of c-type cytochromes in the periplasm of Gram-negative bacteria. The protein is a membrane-anchored thiol-oxidoreductase that has been hypothesized to be involved in the recognition and reduction of apocytochrome c, a prerequisite for covalent heme attachment. Here, we present the 1.7A crystal structure of the soluble periplasmic domain of CcmH from the opportunistic pathogen Pseudomonas aeruginosa (Pa-CcmH*). The protein contains a three-helix bundle, i.e. a fold that is different from that of all other thiol-oxidoreductases reported so far. The catalytic Cys residues of the conserved LRCXXC motif (Cys(25) and Cys(28)), located in a long loop connecting the first two helices, form a disulfide bond in the oxidized enzyme. We have determined the pK(a) values of these 2 Cys residues of Pa-CcmH* (both >8) and propose a possible mechanistic role for a conserved Ser(36) and a water molecule in the active site. The interaction between Pa-CcmH* and Pa-apocyt c(551) (where cyt c(551) represents cytochrome c(551)) was characterized in vitro following the binding kinetics by stopped-flow using a Trp-containing fluorescent variant of Pa-CcmH* and a dansylated peptide, mimicking the apocytochrome c(551) heme binding motif. The kinetic results show that the protein has a moderate affinity to its apocyt substrate, consistent with the role of Pa-CcmH as an intermediate component of the assembly line for c-type cytochrome biogenesis.  相似文献   

13.
When a total soluble extract of Nitrosomonas europaea was denatured with dodecyl sulphate, subjected to dodecyl sulphate/polyacrylamide-gel electrophoresis and illuminated with near-u.v. light, eight bands of protein fluorescence were observed. All but one of these bands were red in colour, a property characteristic of c-type cytochromes. Standard techniques were used to purify soluble c-type cytochromes from this organism, and it was then possible to assign all but two very minor bands to specific c-type cytochromes, namely hydroxylamine oxidase, cytochrome c-554, cytochrome c-552 and a cytochrome c-550 not previously described. The eight band had fluorescence peaking in the green region of the spectrum, probably caused by covalently bound flavin, and co-purified with hydroxylamine oxidase. The following physical properties were determined for these components: isoelectric point, molecular weights according to gel filtration and mobility on dodecyl sulphate/polyacrylamide gels, and alpha-band spectra at room temperature and 77K. Redox potentials were measured as follows: cytochrome c-554, E(m,7) = +20mV; cytochrome c-552, E(m,7) = +230mV; cytochrome c-550, E(m,7) = +140mV. When washed membranes were applied to dodecyl sulphate/polyacrylamide gels in the same way, a number of fluorescent bands were observed that could be matched by soluble proteins. In addition, there was one band that could not be detected in supernatants, migrating with an apparent molecular weight of 24000. This species is probably coincident with a c-type cytochrome having E(m,7) = +170mV found in redox titration of these membranes. In future studies, gel fluorescence should form a useful complement to spectroscopy for analysis of cytochrome composition in active cell-free preparations or semi-purified material.  相似文献   

14.
Electron donating activities of plastocyanins and c-type cytochromesof various organisms for photosystem I reactions were studiedwith membrane fragments of the blue-green alga Anabaena variabilisand the higher plant Spinacea oleracea. In the Anabaena photosystem I reaction, basic but not acidicplastocyanin and c-type cytochromes acted as efficient electrondonors, while only acidic redox proteins were active in thespinach photosystem I reaction. The selective reactivity ofredox proteins in the two photosystem I reactions was observedwith both plastocyanin (or cytochrome) limited and saturatedconditions. These data support our previous observation that photosystemI of blue-green algae differs from those of other green plantswith respect to specificity to the proteinous electron donor(1). (Received August 17, 1971; )  相似文献   

15.
Thioredoxins (TRXs) are ubiquitous disulfide oxidoreductases structured according to a highly conserved fold. TRXs are involved in a myriad of different processes through a common chemical mechanism. Plant TRXs evolved into seven types with diverse subcellular localization and distinct protein target selectivity. Five TRX types coexist in the chloroplast, with yet scarcely described specificities. We solved the crystal structure of a chloroplastic z-type TRX, revealing a conserved TRX fold with an original electrostatic surface potential surrounding the redox site. This recognition surface is distinct from all other known TRX types from plant and non-plant sources and is exclusively conserved in plant z-type TRXs. We show that this electronegative surface endows thioredoxin z (TRXz) with a capacity to activate the photosynthetic Calvin–Benson cycle enzyme phosphoribulokinase. The distinct electronegative surface of TRXz thereby extends the repertoire of TRX–target recognitions.  相似文献   

16.
The four-helix-bundle protein fold can be constructed from a wide variety of primary amino acid sequences. Proteins with this structure are excellent candidates for investigations of the relationship between folding mechanism and topology. The folding of cytochrome b(562), a four-helix-bundle heme protein, is hampered by heme dissociation. To overcome this complication, we have engineered a variant of cytochrome b(562) (cyt c-b(562)) featuring a c-type linkage between the heme and the polypeptide chain. The replacement of the native cyt b(562) leader sequence in this protein with that of a c-type cytochrome (cyt c(556)) led to high yields of fully matured and correctly folded cyt c-b(562). We have determined the X-ray crystal structure of cyt c-b(562) at 2.25 A and characterized its physical, chemical, and folding properties. These measurements reveal that the c-type linkage does not perturb the protein fold or reduction potential of the heme group. The covalent attachment of the porphyrin to the polypeptide does, however, produce a substantial change in protein stability and folding kinetics.  相似文献   

17.
In c-type cytochromes, heme is attached to the polypeptide via thioether linkages between vinyl groups on the tetrapyrrole ring and cysteine thiols in a CX(2)CH motif. To study the role of the heme-binding site in c-type cytochrome assembly and function, we generated amino acid changes in this region of Rhodobacter sphaeroides cytochrome c(2) ((15)Cys-Gln-Thr-Cys-His(19)). Amino acid substitutions at Cys(15), Cys(18), or His(19) produced mutant proteins that did not support growth via photosynthesis where this electron carrier is required. Many of these changes appeared to slow signal peptide removal, suggesting that heme attachment is coupled to processing of the c-type cytochrome precursor protein. Inserting an alanine between the cysteine ligands (CycA-Ins17A) did not significantly alter the behavior of this protein in vivo and in vitro, suggesting that the existence of 2 residues between cysteine thiols is not essential for heme attachment to a Class I c-type cytochrome like cytochrome c(2).  相似文献   

18.
Rhodobacter sphaeroides cells containing an in-frame deletion within ccmA lack detectable soluble and membrane-bound c-type cytochromes and are unable to grow under conditions where these proteins are required. Only strains merodiploid for ccmABCDG were found after attempting to generate cells containing either a ccmG null mutation or a ccmA allele that should be polar on to expression of ccmBCDG, suggesting that CcmG has another important role in R. sphaeroides.  相似文献   

19.
During cytochrome c maturation (Ccm), the DsbA-dependent thio-oxidative protein-folding pathway is thought to introduce a disulphide bond into the haem-binding motif of apocytochromes c. This disulphide bond is believed to be reduced through a thio-reductive pathway involving the Ccm components CcdA (DsbD), CcmG and CcmH. Here, we show in Rhodobacter capsulatus that in the absence of DsbA cytochrome c levels were decreased and CcdA or CcmG or the putative glutathione transporter CydDC was not needed for Ccm. This decrease was not due to overproduction of the periplasmic protease DegP as a secondary effect of DsbA absence. In contrast, CcmH was absolutely necessary regardless of DsbA, indicating that compensatory thio-redox interactions excluded it. Remarkably, the double (DsbA-CcmG) and triple (DsbA-CcmG-CcdA) mutants produced cytochromes c at lower levels than the DsbA-null mutants, unless they contained a CcmG derivative (CcmG*) lacking its thio-reductive activity. Purified CcmG* can bind apocytochrome c in vitro, revealing for the first time a thiol-independent, direct interaction between apocytochrome c and CcmG. Furthermore, elimination of the thio-redox components does not abolish cytochrome c production, restricting the number of Ccm components essential for haem-apocyt c ligation per se during Ccm.  相似文献   

20.
The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号