首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
5.
We described previously a novel role for cyclin A2/Cdk2 as a progesterone receptor (PR) coactivator. In reporter gene assays, cyclin A2 overexpression enhanced PR activity while inhibition of Cdk2 activity using the chemical inhibitor roscovitine or Cdk2 siRNA strongly inhibited PR activity. We demonstrate here that both Cdk1 and Cdk2 contribute to maximal induction of endogenous progestin responsive genes in T47D breast cancer cells. Our earlier studies suggested that the mechanism by which cyclin A2/Cdk2 enhances PR activity is via phosphorylation of steroid receptor coactivator-1 (SRC-1), which increases PR-SRC-1 interactions. To assess the importance of SRC-1 phosphorylation in the regulation of PR activity, SRC-1 was phosphorylated by cyclin A2/Cdk2 in vitro and seventeen phosphorylation sites were identified using biochemical techniques. We show that one of these sites, T1426 (adjacent to the C-terminal LXXLL nuclear receptor interaction motif), is an in vivo target of Cdks in mammalian cells and an in vitro target of Cdk1 and Cdk2. Phosphorylation of T1426 also contributes to SRC-1 coactivation potential, as mutation of the threonine target site to alanine results in reduced stimulation of PR activity by SRC-1. Together, these results suggest a role for Cdk1 and Cdk2 in the regulation of endogenous PR activity in part through phosphorylation of SRC-1.  相似文献   

6.
Regulation of transmembrane signaling by receptor phosphorylation   总被引:65,自引:0,他引:65  
At least two major effects of receptor phosphorylation have been identified--regulation of receptor function, and regulation of receptor distribution. In many cases where phosphorylation directly alters the functions of receptors, this appears to be in a negative direction. Such decreases in receptor activity may reflect reduced ability to interact with biochemical effectors (e.g., the beta-adrenergic receptor, rhodopsin), reduced affinity for binding agonist ligands (EGF,IGF-I, insulin receptors) or reduced enzymatic activity (e.g., tyrosine kinase activity of the insulin or EGF receptor). In all instances, these negative modulations are associated with phosphorylation of serine and/or threonine residues of the receptor proteins. In contrast, the tyrosine kinase receptors also appear to be susceptible to positive modulation by phosphorylation. With these receptors, autophosphorylation of tyrosine residues may lead to enhanced protein-tyrosine kinase activity of the receptors and increased receptor function. In addition, the subcellular distribution of a receptor may be regulated by its phosphorylation status (e.g., the beta-adrenergic receptor, receptors for insulin, EGF, IGF-II, and transferrin). The emerging paradigm is that receptor phosphorylation may in some way promote receptor internalization into sequestered compartments where dephosphorylation occurs. The molecular and cellular mechanisms involved in translating changes in receptor phosphorylation into changes in receptor distribution remain to be elucidated. Moreover, the biological role of receptor internalization may be quite varied. Thus, in the case of the beta-adrenergic receptor, it may serve primarily as a mechanism for bringing the phosphorylated receptors into contact with intracellular phosphatases that dephosphorylate and resensitize it. By contrast, for the transferrin receptor and other receptors involved in receptor-mediated endocytosis, the internalization presumably functions to carry some specific ligand or metabolite into the cell. The role of phosphorylation in regulating receptor function dramatically extends the range of regulatory control of this important covalent modification.  相似文献   

7.
Regulation of epidermal growth factor receptor by estrogen   总被引:22,自引:0,他引:22  
  相似文献   

8.
9.
One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.  相似文献   

10.
K T Yu  J E Pessin  M P Czech 《Biochimie》1985,67(10-11):1081-1093
The regulation of the insulin receptor kinase by phosphorylation and dephosphorylation has been examined. Under in vitro conditions, the tyrosine kinase activity of the insulin receptor toward histone is markedly activated when the receptor either undergoes autophosphorylation or is phosphorylated by a purified preparation of src tyrosine kinase on tyrosine residues of its beta subunit. The elevated kinase activity of the phosphorylated insulin receptor is readily reversed when the receptor is dephosphorylated with alkaline phosphatase. Analysis of tryptic digests of phosphorylated insulin receptor using reverse-phase high pressure liquid chromatography suggests that phosphorylation of a specific tyrosine site on the receptor beta subunit may be involved in the mechanism of the receptor kinase activation. Further studies indicate that tyrosine phosphorylation-mediated increase in insulin receptor activity also occurs in intact cells. Thus, when the histone kinase activities of insulin receptor from control and insulin-treated H-35 hepatoma cells are assayed in vitro following the purification of the receptors under conditions which preserve the phosphorylation state of the receptors, the insulin receptors extracted from insulin-treated cells exhibit histone kinase activities 100% higher than those from control cells. The elevated receptor kinase activity from insulin-treated cells appears to result from the increase in phosphotyrosine content of the receptor. Taken together, these results indicate that tyrosine phosphorylation of the insulin receptor beta subunit exerts a major stimulatory effect on the kinase activity of the receptor. Insulin receptor partially purified by specific immunoprecipitation from detergent extracts of control and isoproterenol-treated cells have similar basal but diminished insulin-stimulated beta subunit autophosphorylation activities when incubated with [gamma-32 P]ATP. Similarly, the ability of insulin to stimulate the receptor beta subunit phosphorylation in intact isoproterenol-treated adipocytes is greatly attenuated, whereas, the basal phosphorylation of the insulin receptor is slightly increased by the beta-catecholamine. These data indicate that in rat adipocytes, a cyclic AMP-mediated mechanism, possibly through serine and threonine phosphorylation of the receptor or its regulatory components, may uncouple the receptor tyrosine kinase activity from activation by insulin. Treatment of 32P-labeled H-35 hepatoma cells with phorbol myristate acetate (PMA) results in a marked increase in serine phosphorylation of the insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

12.
13.
Structure and dynamics of the estrogen receptor   总被引:3,自引:0,他引:3  
To evaluate the structure and function of estrogen receptor (ER) in various mammalian systems, the cytosolic forms of receptor from calf uterus and from MCF-7 human breast cancer cells have been purified to virtual homogeneity by sequential selective adsorption to estradiol-Sepharose and heparin-Sepharose. In both cases, the purified steroid-receptor complex appears to exist as an activated 5S homo- or heterodimer of mol. wt 65,000 (4S) steroid-binding subunits. Purified ER has high affinity for DNA and serves as a substrate for phosphorylation by a purified rat brain kinase. Several monoclonal antibodies prepared against affinity-purified MCF-7 cytosol ER have been used to localize receptor by an indirect immunoperoxidase technique in fixed, frozen sections of human breast tumors, human uterus, rabbit uterus and in other mammalian reproductive tissues and cancers, as well as in fixed MCF-7 cell cultures and in paraffin-embedded sections of breast tumors and human endometrium. In all cases, we have observed only nuclear localization of immunoreactive receptor in tissues and whole cells, even under conditions in which virtually all of the receptor is found in a low-salt extract (cytosol) of the target cells. Treatment of cells or tissues in vivo or in vitro with estradiol alters the intensity but not the distribution of specific staining for ER. By immunoelectron microscopy, receptor was localized in the euchromatin, but not in the marginated heterochromatin or nucleoli of MCF-7 nuclei and epithelial and stromal nuclei of postmenopausal human endometrium. These observations suggest that the majority of the unoccupied receptor may actually reside in the nucleus, rather than in the cytoplasm as previously thought. Thus, hormone action may involve binding of the steroid directly to receptor loosely associated with nuclear components, followed by conversion of the steroid-receptor complex to an activated form which becomes more tightly associated with chromatin.  相似文献   

14.
15.
16.
Estrogen receptor (ER) ligands can modulate innate and adaptive immunity and hematopoiesis, which may explain the clear sex differences in immune responses during autoimmunity, infection or trauma. Dendritic cells (DC) are antigen presenting cells important for initiation of innate and adaptive immunity, as well as immune tolerance. DC progenitors and terminally differentiated DC express ER, indicating the ER ligands may regulate DC at multiple developmental and functional stages. Although there are profound differences in innate immunity between males and females or upon systemic imposition of sex hormones, studies are just beginning to link these differences to DC. Our and others studies demonstrate that estradiol and other ER ligands regulate the homeostasis of bone marrow myeloid and lymphoid progenitors of DC, as well as DC differentiation mediated by GM-CSF and Flt3 Ligand. Since DC have a brief lifespan, these data suggest that relatively short exposures to ER ligands in vivo will alter DC numbers and intrinsic functional capacity related to their developmental state. Studies in diverse experimental models also show that agonist and antagonist ER ligands modulate DC activation and production of inflammatory mediators. These findings have implications for human health and disease since they suggest that both DC development and functional capacity will be responsive to the physiological, pharmacological and environmental ER ligands to which an individual is exposed in vivo.  相似文献   

17.
18.
The alpha-factor pheromone receptor activates a G protein signaling cascade that stimulates MATa yeast cells to undergo conjugation. The cytoplasmic C terminus of the receptor is not necessary for G protein activation but instead acts as a regulatory domain that promotes adaptation to alpha-factor. The role of phosphorylation in regulating the alpha-factor receptor was examined by mutating potential phosphorylation sites. Mutation of the four most distal serine and threonine residues in the receptor C terminus to alanine caused increased sensitivity to alpha-factor and a delay in recovering from a pulse of alpha-factor. 32PO4 labeling experiments demonstrated that the alanine substitution mutations decreased the in vivo phosphorylation of the receptor. Phosphorylation apparently alters the regulation of G protein activation, since neither receptor number nor affinity for ligand was significantly altered by mutation of the distal phosphorylation sites. Furthermore, mutation of the distal phosphorylation sites in a receptor mutant that fails to undergo ligand-stimulated endocytosis caused increased sensitivity to alpha-factor, which suggests that regulation by phosphorylation can occur at the cell surface and is independent of endocytosis. Mutation of the distal serine and threonine residues of the receptor also caused a slight defect in alpha-factor-induced morphogenesis, but the defect was not as severe as the morphogenesis defect caused by truncation of the cytoplasmic C terminus of the receptor. These distal residues in the C terminus play a special role in receptor regulation, since mutation of the next five adjacent serine and threonine residues to alanine did not affect the sensitivity to alpha-factor. Altogether, these results indicate that phosphorylation plays an important role in regulating alpha-factor receptor function.  相似文献   

19.
Activation of signal transduction kinase cascades has been shown to alter androgen receptor (AR) activity. Although it has been suggested that changes in AR phosphorylation might be directly responsible, the basal and regulated phosphorylations of the AR have not been fully determined. We have identified the major sites of AR phosphorylation on ARs expressed in COS-1 cells using a combination of peptide mapping, Edman degradation, and mass spectrometry. We describe the identification of seven AR phosphorylation sites, show that the phosphopeptides seen with exogenously expressed ARs are highly similar to those seen with endogenous ARs in LNCaP cells and show that specific agonists differentially regulate the phosphorylation state of endogenous ARs in LNCaP prostate cancer cells. Treatment of LNCaP cells with the synthetic androgen, R1881, elevates phosphorylation of serines 16, 81, 256, 308, 424, and 650. Ser-94 appears constitutively phosphorylated. Forskolin, epidermal growth factor, and phorbol 12-myristate 13-acetate increase the phosphorylation of Ser-650. The kinetics of phosphorylation of most sites in response to hormone or forskolin is temporally delayed, reaching a maximum at 2 h post-stimulation. The exception is Ser-81, which continues to display increasing phosphorylation at 6 h. These data provide a basis for analyzing mechanisms of cross-talk between growth factor signaling and androgen in prostate development, physiology, and cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号