首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Beryllium ion elicits p53-mediated cell cycle arrest in some types of human cancer cells, and it is a potent inhibitor of GSK3 kinase activity. Paradoxically, Be2+ is regarded to have almost negligible aqueous solubility at physiological pH, due to precipitation as Be(OH)2. This study demonstrates that the interaction of Be2+ with serum proteins greatly increases its effective solubility. In typical serum-supplemented mammalian cell culture medium, Be2+ was soluble up to about 0.5?mM, which greatly exceeds the concentration needed for biological activity. Some biochemical studies require protein-free Be2+ solutions. In such cases, the inclusion of a specific inorganic counterion, sulfate, increased solubility considerably. The role of sulfate as a solubility-enhancing factor became evident during preparation of buffered solutions, as the apparent solubility of Be2+ depended on whether H2SO4 or a different strong acid was used for pH adjustment. The binding behavior of Be2+ observed via isothermal titration calorimetry was affected by the inclusion of sodium sulfate. The data reflect a “Diverse Ion Effect” consistent with ion pair formation between solvated Be2+ and sulfate. These insights into the solubility behavior of Be2+ at physiological and near-physiological pH will provide guidance to assist sample preparation for biochemical studies.  相似文献   

2.
InNeurospora crassa,0.44 mM Be2+ caused half-maximal inhibition of growth and this inhibition could be fully counteracted by the addition of 2.5 mM Ca2+ to the medium. Mn2+ and Mg2+ were less effective in reversing the growth inhibition caused by Be2+ and the order of effectiveness was Ca2+ > Mn2+ > Mg2+. Fe3+ and Zn2+ were ineffective in reversing Be2+ toxicity. Pyruvate, malate and succinate also reversed the growth inhibition caused by Be2+ inN. crassa. Pyruvate restored growth by a mechanism not involving control of Be2+ accumulation in the mould. The rate of utilisation of glucose by the mycelia grown in the presence of Be2+ was reduced, while that of pyruvate was not affected. The results indicate that the primary metabolic lesion in Be2+ toxicity inN. crassa is probably a block at some step(s) in the glycolytic sequence.  相似文献   

3.
The effect of divalent metal ions on the activity of a mutant histidinol phosphate phosphatase has been studied. The enzyme was isolated from strain TA387, a mutant of Salmonella typhimurium with a nonsense lesion near the midpoint of the bifunctional hisB gene. Mn2+, Mg2+, Co2+, and Zn2+ shift the optimal pH of phosphatase activity to 6.5 while Be2+ and Ca2+ have no effect on the shape of the pH profile. In the absence of divalent metal ions, the pH optimum is 7.5. Four Me2+ ions, Mn2+, Co2+, Zn2+, and Fe2+ decreased the Km of histidinol phosphate at pH 6.5 from 5.5 mm (without Me2+) to 0.14 mm. Ni2+ and Be2+ increased the Km to 22.2 and 25.0 mm, respectively, and Ca2+ and Mg2+ had an intermediate effect. Changes in maximal velocity were substantially less, only about 2-fold changes being observed. It was shown that the maximal velocity at optimal pH was the same in the absence and presence of Mn2+. Kinetic analysis indicated that there was a rapid equilibrium-ordered addition of Mn2+ to the enzyme before the addition of the substrate, histidinol phosphate. A kimn2+ of 4.3 μm was calculated for the metal ion activation at both pH 6.5 and 7.5. Addition of ethyl-enediaminetetracetate (EDTA) strongly inhibited the phosphatase; inhibition could be reversed by addition of several Me2+ ions, Mg2+ being the most efficient followed by Mn2+. Prolonged incubation with EDTA led to irreversible inactivation.  相似文献   

4.
Rats given an LD50 dose of Be2+ showed reduced activities of ornithine decarboxytase and tyrosine aminotransferase in liver in response to dexamethasone induction. Control fed animals showed superinduction. Be2+ also inhibited the uptake of [3H]orotic acid into rapidly labelled RNA of ribonucleoprotein particles extracted from liver nuclei in isomolar solutions at pH 8.0. Consistent with inhibition of cytoplasmic protein kinase reported previously (Kaseret at., 1980), the uptake of [32P]Pi into proteins in the ribonucleoprotein particles was also diminished.  相似文献   

5.
Cardiac sarcoplasmic reticulum (SR) contains an endogenous phosphorylation system that under specific conditions phosphorylates two proteins with apparent molecular masses of 150 and 130 kDa. The conditions for their phosphorylation are as for the skeletal muscle sarcalumenin and the histidine-rich Ca2+ binding protein (HCP) with respect to: (i) Ca2+ and high concentrations of NaF are required; (ii) phosphorylation is obtained with no added Mg2+ and shows a similar time course and ATP concentration dependence; (iii) inhibition by similar concentrations of La3+; (iv) phosphorylation is obtained with [γ-32P]GTP; (v) ryanodine binding is inhibited parallel to the phosphorylation of the two proteins. The endogenous kinase is identified as casein kinase II (CK II) based on its ability to use GTP as effectively as ATP, and its inhibition by La3+. The association of CK II with the cardiac SR, even after EGTA extraction at alkaline pH, is demonstrated using antibodies against CK II. The cardiac 130 kDa protein is identified as sarcalumenin based on its partial amino acid sequence and its blue staining with Stains-All. Cardiac sarcalumenin is different from the skeletal muscle protein based on electrophoretic mobilities, immunological analysis, peptide and phosphopeptide maps, as well as amino acid sequencing. Preincubation of SR with NaF and ATP, but not with NaF and AMP-PNP caused strong inhibition of ryanodine binding. This is due to decrease in Ca2+- and ryanodine-binding affinities of the ryanodine receptor (RyR) by about 6.6 and 18-fold, respectively. These results suggest that cardiac sarcalumenin is an isoform of the skeletal muscle protein. An endogenous CK II can phosphorylate sarcalumenin, and in parallel to its phosphorylation the properties of the ryanodine receptor are modified. Received: 15 December 1998/Revised: 25 March 1999  相似文献   

6.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2? and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM?1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2? complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

7.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2− and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM−1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2− complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

8.
Fluorescein isothiocyanate (FITC) reactivity with the (Na+ + K+)-ATPase was studied at pH 6.5 and 9.0. Reaction with FITC is nearly complete in 30 min and is irreversible at both pH values. Differential inhibition of enzyme activity is observed at the two pH values as follows: at pH 6.5 the maximal inhibition reached is only 35–45% of the ATPase or p-nitrophenylphosphatase activities, whereas at pH 9.0 ATPase activity can be completely inhibited while maximal phosphatase inhibition is ca. 50%. At all concentrations of FITC tested, more FITC is incorporated into the enzyme at pH 9.0 than at 6.5. At both pH values NaCl increases the inhibition due to FITC while KCl protects against the inhibition. ATP protects the enzyme at both pH values with a K0.5 in the range of 8–20 μm. Enzyme that is partially inactivated at either pH shows no significant change in the K0.5 values for Na+ or K+ or in the Km app for ATP or p-nitrophenylphosphate for the remaining activity. The binding of 48VO4 is not changed by reaction with FITC at either pH, while [3H]ouabain binding is inhibited after reaction at pH 9.0 only in the presence of Mg+2 + Na+ + ATP. [3H]Ouabain binding in the presence of Mg+2 + inorganic phosphate is not inhibited by FITC reaction. Enzyme reacted at both pH values exhibits the expected fluorescein fluorescence (λex = 490, λem = 520) but only with enzyme reacted at pH 9.0 is fluorescence quenching by K+ or reversal by Na+ observed. These results suggest that different classes of amino groups react with FITC at the two pH values tested, and that these groups have distinct roles in the different activities of the enzyme.  相似文献   

9.
Purified myelin fraction isolated from rat brain white matter contained Mg2+-dependent protein kinase capable of phosphorylation of myelin basic proteins. The Mg2+-supported kinase was markedly stimulated (two- to fivefold) by micromolar concentrations of free Ca2+ with and without Triton X-100 in the assay, the degree of stimulation being greater with the detergent present. Cyclic AMP, on the other hand, failed to show any effect on phosphorylation of myelin in the absence of Triton X-100 and in the presence of Triton caused only 25–30% stimulation. The phosphorylation reaction was temperature dependent and exhibited a pH optimum at pH 6.5. Apparent affinity toward MgATP2? was found to be about 70 μm and Ca2+ had no effect on this parameter. Dependence on MgCl2 of myelin phosphorylation indicated the presence of high- and low-affinity sites toward Mg2+; Ca2+ appeared to influence the low-affinity site. Maximal level of phosphorylation was attained by 10–15 min at 30 °C and it declined at longer incubation times due to phosphatase activity present in the preparation. Stimulatory effect of Ca2+ on phosphorylation was not due to inhibition of phosphatase activity. Dephosphorylation experiments showed that neither cyclic AMP nor Ca2+ influenced the myelin phosphatase activity. Autoradiographic analysis revealed that phosphorylation of myelin basic proteins accounted for nearly 90% of total myelin phosphorylation. This was supported by the observation that the HCl extract of myelin contained 85% of total activity and comigrated with purified myelin basic proteins. Basal and Ca2+-stimulated phosphorylation of basic proteins were due to phosphorylation of serines mainly, although threonine was phosphorylated to a minor extent. Within myelin, Ca2+ and cyclic AMP kinases are differentially bound. It appears that the myelin kinase (studied in vitro) is primarily influenced by Ca2+ rather than cyclic AMP. Inhibitors (Type I and Type II) of cyclic nucleotide-stimulated protein kinases had no effect on the Ca2+-stimulated phosphorylation although basal and cyclic AMP-stimulated phosphorylation was inhibited, indicating that the Ca2+ kinase is a separate and distinct enzyme from the cyclic AMP-stimulated and basal kinase(s). Also, leupeptin, a protease inhibitor, did not influence basal, cyclic AMP-stimulated, or Ca2+-stimulated myelin phosphorylation, indicating that under the conditions used protease(s) did not alter the myelin kinase activity. The potential significance of phosphorylation of myelin basic proteins and the stimulatory action of Ca2+ on this reaction are discussed.  相似文献   

10.
S100B is a homodimeric zinc-, copper-, and calcium-binding protein of the family of EF-hand S100 proteins. Zn2+ binding to S100B increases its affinity towards Ca2+ as well as towards target peptides and proteins. Cu2+ and Zn2+ bind presumably to the same site in S100B. We determined the structures of human Zn2+- and Ca2+-loaded S100B at pH 6.5, pH 9, and pH 10 by X-ray crystallography at 1.5, 1.4, and 1.65 Å resolution, respectively. Two Zn2+ ions are coordinated tetrahedrally at the dimer interface by His and Glu residues from both subunits. The crystal structures revealed that ligand swapping occurs for one of the four ligands in the Zn2+-binding sites. Whereas at pH 9, the Zn2+ ions are coordinated by His15, His25, His 85′, and His 90′, at pH 6.5 and pH 10, His90′ is replaced by Glu89′. The results document that the Zn2+-binding sites are flexible to accommodate other metal ions such as Cu2+. Moreover, we characterized the structural changes upon Zn2+ binding, which might lead to increased affinity towards Ca2+ as well as towards target proteins. We observed that in Zn2+-Ca2+-loaded S100B the C-termini of helix IV adopt a distinct conformation. Zn2+ binding induces a repositioning of residues Phe87 and Phe88, which are involved in target protein binding. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

11.
Zinc activates a specific Zn2+-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca2+ responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na+/H+ exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn2+ binding site, His17 or His19, or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp313 with alanine resulted in similar Ca2+ responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na+/H+ exchange at pH 7.4 and pH 6.5. Substitution of Asp313 to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp313, which was shown to modulate Zn2+ binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.  相似文献   

12.
Calponin, a thin filament–associated protein, inhibits actin-activated myosin ATPase activity, and this inhibition is reversed by phosphorylation. Calponin phosphorylation by protein kinase C and Ca2+/calmodulin-dependent protein kinase II has been shown in purified protein systems but has been difficult to demonstrate in more physiological preparations. We have previously shown that calponin is phosphorylated in a cell-free homogenate of swine carotid artery. The goal of this study was to determine whether protein kinase C and/or Ca2+/calmodulin-dependent protein kinase II catalyzes calponin phosphorylation. Ca2+-dependent calponin phosphorylation was not inhibited by calmodulin antagonists. In contrast, both Ca2+- and phorbol dibutyrate/1-oleoyl-2-acetyl-sn-glycerol–dependent calponin phosphorylation were inhibited by the pseudosubstrate inhibitor of protein kinase C and staurosporine. Our results also demonstrate that stimulation with either Ca2+, phorbol dibutyrate, or 1-oleoyl-2-acetyl-sn-glycerol activates endogenous protein kinase C. We interpret our results as clearly demonstrating that the physiological kinase for calponin phosphorylation is protein kinase C and not Ca2+/calmodulin-dependent protein kinase II. We also present data showing that the direct measurement of 32P incorporation into calponin and the indirect measurement of calponin phosphorylation using nonequilibrium pH gradient gel electrophoresis provide similar quantitative values of calponin phosphorylation. J. Cell. Physiol. 176:545–552, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
The effect of bicarbonate ions on induction of Mg2+-ATPase activity, on the N-ethylmaleimide inhibition of phosphorylation and on energy-dependent adenine nucleotide exchange has been examined with pea seedling chloroplasts. Incubation of chloroplasts with N-ethylmaleimide in the presence of 15 millimolar bicarbonate in the light results in enhanced inhibition of ATP synthesis when the preillumination pH is maintained between 7.0 and 7.5. Bicarbonate also enhances Mg2+-ATPase activity when it is included in the light-triggering stage at pH 7.0. The conditions (medium pH, bicarbonate concentration, etc.) for demonstrating the bicarbonate-induced enhancement of the N-ethylmaleimide inhibition and ATPase activity are similar to those required for the direct effect of bicarbonate on phosphorylation. Bicarbonate, under the same conditions, does not affect adenine nucleotide exchange (binding or release). It is concluded that the stimulatory effect of bicarbonate on ATP synthesis may be related to its ability to alter directly the conformation of the chloroplast coupling factor under conditions (suboptimal pH) where the enzyme shows minimal activity.  相似文献   

14.
A fluorescence method was adapted to investigate active ion transport in membrane preparations of the SR-Ca-ATPase. The styryl dye RH421 previously used to investigate the Na,K-ATPase was replaced by an analogue, 2BITC, to obtain optimized fluorescence changes upon substrate-induced partial reactions. Assuming changes of the local electric field to be the source of fluorescence changes that are produced by uptake/release or by movement of ions inside the protein, 2BITC allowed the determination of electrogenic partial reactions in the pump cycle. It was found that Ca2+ binding on the cytoplasmic and on the lumenal side of the pump is electrogenic while phosphorylation and conformational transition showed only minor electrogenicity. Ca2+ equilibrium titration experiments at pH 7.2 in the two major conformations of the protein indicated cooperative binding of two Ca2+ ions in state E1 with an apparent half-saturation concentration, K M of 600 nm. In state P-E2 two K M values, 5 μm and 2.2 mM, were determined and are in fair agreement with published data. From Ca2+ titrations in buffers with various pH and from pH titrations in P-E2, it could be demonstrated that H+ binding is electrogenic and that Ca2+ and H+ compete for the same binding site(s). Tharpsigargin-induced inhibition of the Ca-ATPase led to a state with a specific fluorescence level comparable to that of state E1 with unoccupied ion sites, independent of the buffer composition. Received: 21 September 1998/Revised: 18 December 1998  相似文献   

15.
Caldesmon is an actin- and myosin-binding protein found in smooth muscle that inhibits actin activation of myosin ATPase activity. The activity of caldesmon is controlled by phosphorylation and by binding to Ca2+-calmodulin. We investigated the effects of phosphorylation by p21-activated kinase 3 (PAK) and calmodulin on the 22 kDa C-terminal fragment of caldesmon (CaD22). We substituted the major PAK sites, Ser-672 and Ser-702, with either alanine or aspartic acid to mimic nonphosphorylated and constitutively phosphorylated states of caldesmon, respectively. The aspartic acid mutation of CaD22 weakened Ca2+-calmodulin binding but had no effect on inhibition of ATPase activity. Phosphorylation of the aspartic acid mutant with PAK resulted in the slow phosphorylation of Thr-627, Ser-631, Ser-635, and Ser-642. Phosphorylation at these sites weakened Ca2+-calmodulin binding further and reduced the inhibitory activity of CaD22 in the absence of Ca2+-calmodulin. Phosphorylation of these sites of the alanine mutant of CaD22 had no effect on Ca2+-calmodulin binding but did reduce inhibition of ATPase activity. Thus, the region between residues 627 and 642 may contribute to the overall regulation of caldesmon's activity.  相似文献   

16.
Membrane proton transporters contribute to pH homeostasis but have also been shown to transmit information between cells in close proximity through regulated proton secretion. For example, the nematode intestinal Na+/H+ exchanger NHX-7 causes adjacent muscle cells to contract by transiently acidifying the extracellular space between the intestine and muscle. NHX-7 operates during a Ca2+-dependent rhythmic behavior and contains several conserved motifs for regulation by Ca2+ input, including motifs for calmodulin and phosphatidylinositol 4,5-bisphosphate binding, protein kinase C- and calmodulin-dependent protein kinase type II phosphorylation, and a binding site for calcineurin homologous protein. Here, we tested the idea that Ca2+ input differentiates proton signaling from pH housekeeping activity. Each of these motifs was mutated, and their contribution to NHX-7 function was assessed. These functions included pH recovery from acidification in cells in culture expressing recombinant NHX-7, extracellular acidification measured during behavior in live moving worms, and muscle contraction strength as a result of this acidification. Our data suggest that multiple levels of Ca2+ input regulate NHX-7, whose transport capacity normally exceeds the minimum necessary to cause muscle contraction. Furthermore, extracellular acidification limits NHX-7 proton transport through feedback inhibition, likely to prevent metabolic acidosis from occurring. Our findings are consistent with an integrated network whereby both Ca2+ and pH contribute to proton signaling. Finally, our results obtained by expressing rat NHE1 in Caenorhabditis elegans suggest that a conserved mechanism of regulation may contribute to cell-cell communication or proton signaling by Na+/H+ exchangers in mammals.  相似文献   

17.
Substrates regulate the phosphorylation status of nitrate reductase   总被引:1,自引:1,他引:0  
The effect of substrates on the phosphorylation status of nitrate reductase (NR; EC 1.6.6.1) was studied. The enzyme was obtained from the first leaf of 7-day-old oat (Avena sativa L. cv. Suregrain) plants, grown in the light. When desalted crude extracts were incubated with ATP, NR was strongly phosphorylated, as evidenced by the inhibition of the enzyme's activity in the presence of Mg2+. NR sensitivity to Mg2+ remained unchanged when 10 mM nitrate was added to crude extracts after ATP. Addition of nitrate before or simultaneously with ATP slightly decreased Mg2+ inhibition of NR, which was strongly diminished in the presence of 10 mM NO3?+ 100 µM NADH. Incubation with NADH alone did not affect the enzyme's susceptibility to Mg2+ inhibition. When ammonium sulfate was added to crude extracts, NR was recovered in a 0-40% saturation fraction (F1). After incubation of F1 with ATP, the sensitivity of the enzyme to Mg2+ inhibition remained low, but it strongly increased after mixing F1 with a 45-60% saturation fraction (F2) suggesting that also in oats an additional factor (inactivating protein, IP), which probably binds to phospho-NR, would be required to keep the phosphorylated enzyme inactive in a +Mg2+ medium. Addition of 10 mM NO3?+ 100 µM NADH together with desalted F2 did not prevent Mg2+ inhibition suggesting that NO3? did not interfere with IP binding to phospho-NR. Again, incubation of F1 with both substrates during in vitro phosphorylation kept the enzyme active after adding F2, even in the presence of Mg2+, After in vitro phosphorylation, NR in crude extract was hardly reactivated when incubated alone or in the presence of 10 mM NO3? at 30°C. On the other hand, a strong and very rapid reactivation was found when the extract was incubated with both nitrate and NADH. Microcystine, an inhibitor of types 1 and 2A phosphoprotein phosphatases, inhibited the reactivation of phospho-NR induced by the substrates. The results presented here show that the substrates could prevent NR phosphorylation and induce the enzyme's dephosphorylation, but they were effective only after their binding to the NR protein. Thereby, they seemed to affect the NR protein itself and not the phosphatase- or the kinase-proteins. It has been reported that nitrate binding to the enzyme's active site induces conformational changes in the NR protein. We propose that this conformational change would prevent NR phosphorylation, by converting the enzyme into a form in which the site recognized by the protein kinase is no longer accessible, and, simultaneously, stimulate NR dephophorylation by allowing the specific phosphatases to recognize NR.  相似文献   

18.
Nuclei isolated from rat ventral prostate contain a number of messenger-dependent and -independent protein kinases. Studies were undertaken to determine the relative contribution of these protein kinases in phosphorylation of non-histone proteins (NHPs) in isolated nuclei. The data suggest that messenger-dependent protein kinases such as those dependent on cAMP or Ca2+/calmodulin or Ca2–/phospholipid may be present in very small amounts in intact isolated nuclei, and thus appear not to be significantly involved in phosphorylation of endogenous NHPs. Messenger-independent nuclear associated protein kinases PK-N1 and PK-N2 are known to catalyze the phosphorylation of NHPs in vitro (Goueli SA, et al., Eur J Biochem 113: 45–51, 1980). Of these, the intrinsic heparin-sensitive PK-N2 as compared with heparin-insensitive PK-N1 appeared to be the predominant protein kinase engaged in phosphorylation of NHPs in intact nuclei. About 78–88% of NHP phosphorylation in intact nuclei was inhibited by heparin suggesting that the remaining 12–22% phosphorylation of NHPs was catalyzed via the heparin-insensitive protein kinase(s). Further, the data provide additional evidence that heparin-sensitive PK-N2 is the one that is most responsive to androgenic status in the animal.Abbreviations NHP Non-Histone Protein - PMSF Phenylmethylsulfonyl Fluoride - DTT Dithiothreitol - SDS Sodium Dodecyl Sulfate  相似文献   

19.
《Free radical research》2013,47(4-5):237-243
Fecl2, in Na phosphate buffer autoxidizes forming active oxygen species which damage deoxyribose. Di-and triphosphate adenine-nucleotides inhibit both Fe2+ autoxidation and deoxyribose damage in Na phosphate buffer pH 7.4. The inhibition is related to the number of charges of the adenine-nucleotide molecule: ATP at pH 7.4 is a better inhibitor than ADP; at a pH (6.5) close to the pK's of the third and fourth charge of ADP and ATP, ADP inhibition is greatly decreased whereas ATP inhibition is slightly affected. The extent of ATP inhibition of Fe2+ autoxidation depends both on ATP/Mg2+ and ATP/Fe2+ ratios in the reaction mixture. Formation of a Fe2+ -nucleotide complex appears to be the mechanism through which ATP and ADP inhibit autoxidation and thus the generation of active oxygen species. These findings are discussed in relation to physiological and pathological fluctuations of nucleotide concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号