首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid β-peptide (Aβ), the pathogenic agent of Alzheimer disease, is a physiological metabolite whose levels are constantly controlled in normal brain. Recent studies have demonstrated that a fraction of extracellular Aβ is associated with exosomes, small membrane vesicles of endosomal origin, although the fate of Aβ in association with exosome is largely unknown. In this study, we identified novel roles for neuron-derived exosomes acting on extracellular Aβ, i.e. exosomes drive conformational changes in Aβ to form nontoxic amyloid fibrils and promote uptake of Aβ by microglia. The Aβ internalized together with exosomes was further transported to lysosomes and degraded. We also found that blockade of phosphatidylserine on the surface of exosomes by annexin V not only prevented exosome uptake but also suppressed Aβ incorporation into microglia. In addition, we demonstrated that secretion of neuron-derived exosomes was modulated by the activities of sphingolipid-metabolizing enzymes, including neutral sphingomyelinase 2 (nSMase2) and sphingomyelin synthase 2 (SMS2). In transwell experiments, up-regulation of exosome secretion from neuronal cells by treatment with SMS2 siRNA enhanced Aβ uptake into microglial cells and significantly decreased extracellular levels of Aβ. Our findings indicate a novel mechanism responsible for clearance of Aβ through its association with exosomes. The modulation of the vesicle release and/or elimination may alter the risk of AD.  相似文献   

2.
Cell death and survival of neural progenitor (NP) cells are determined by signals that are largely unknown. We have analyzed pro-apoptotic signaling in individual NP cells that have been derived from mouse embryonic stem cells. NP formation was concomitant with elevated apoptosis and increased expression of ceramide and prostate apoptosis response 4 (PAR-4). Morpholino oligonucleotide-mediated antisense knockdown of PAR-4 or inhibition of ceramide biosynthesis reduced stem cell apoptosis, whereas PAR-4 overexpression and treatment with ceramide analogs elevated apoptosis. Apoptotic cells also stained for proliferating cell nuclear antigen (a nuclear mitosis marker protein), but not for nestin (a marker for NP cells). In mitotic cells, asymmetric distribution of PAR-4 and nestin resulted in one nestin(-)/PAR-4(+) daughter cell, in which ceramide elevation induced apoptosis. The other cell was nestin(+), but PAR-4(-), and was not apoptotic. Asymmetric distribution of PAR-4 and simultaneous elevation of endogenous ceramide provides a possible mechanism underlying asymmetric differentiation and apoptosis of neuronal stem cells in the developing brain.  相似文献   

3.
Most anti-cancer agents induce apoptosis, however, a development of multidrug resistance in cancer cells and defects in apoptosis contribute often to treatment failure. Here, the mechanism of curcumin-induced apoptosis was investigated in human leukemia HL60 cells and their HL60/VCR multidrug-resistant counterparts. In both cell lines curcumin induced a bi-phasic ceramide generation with a slow phase until 6 h followed by a more rapid one. The level of the ceramide accumulation correlated inversely with the cell viability. We found that the ceramide elevation resulted from multifarious changes of the activity of sphingolipid-modifying enzymes. In both cell lines curcumin induced relatively fast activation of neutral sphingomyelinase (nSMase), which peaked at 3 h, and was followed by inhibition of sphingomyelin synthase activity. In addition, in HL60/VCR cells the glucosylceramide synthase activity was diminished by curcumin. This process was probably due to curcumin-induced down-regulation of P-gp drug transporter, since cyclosporine A, a P-gp blocker, also inhibited the glucosylceramide synthase activity. Inhibition of nSMase activity with GW4869 or silencing of SMPD3 gene encoding nSMase2 reversed the curcumin-induced inhibition of sphingomyelin synthase without affecting the glucosylceramide synthase activity. The early ceramide generation by nSMase was indispensable for the later lipid accumulation, modulation of Bax, Bcl-2 and caspase 3 levels, and for reduction of cell viability in curcumin-treated cells, as all these events were inhibited by GW4869 or nSMase2 depletion. These data indicate that the early ceramide generation by nSMase2 induced by curcumin intensifies the later ceramide accumulation via inhibition of sphingomyelin synthase, and controls pro-apoptotic signaling.  相似文献   

4.
Lipid analysis of gestational day E14.5 mouse brain revealed elevation of ceramide to a tissue concentration that induced apoptosis when added to the medium of neuroprogenitor cells grown in cell culture. Elevation of ceramide was coincident with the first appearance of b-series complex gangliosides (BCGs). Expression of BCGs by stable transfection of murine neuroblastoma (F-11) cells with sialyltransferase-II (ST2) resulted in a 70% reduction of ceramide-induced apoptosis. This was most likely due to an 80% reduced expression of prostate apoptosis response-4 (PAR-4). PAR-4 expression and apoptosis were restored by preincubation of ST2-transfected cells with N-butyl deoxinojirimycin (NB-DNJ) or PD98059, two inhibitors of ganglioside biosynthesis or p42/44 mitogen-activated protein (MAPK) kinase, respectively. In sections of day E14.5 mouse brain, the intermediate zone showed intensive staining for complex gangliosides, but only low staining for apoptosis (TUNEL) and PAR-4. Apoptosis and PAR-4 expression, however, were elevated in the ventricular zone which only weakly stained for complex gangliosides. Whole cell patch clamping revealed a 2-fold increased calcium influx in ST2-transfected cells, the blocking of which with nifedipine restored apoptosis to the level of untransfected cells. In serum-free culture, supplementation of the medium with IGF-1 was required to maintain MAPK phosphorylation and the anti-apoptotic effect of BCG expression. BCG-enhanced calcium influx and the presence of insulin-like growth factor-1 may thus activate a cell survival mechanism that selectively protects developing neurons against ceramide-induced apoptosis by up-regulation of MAPK and reduction of PAR-4 expression.  相似文献   

5.
The elevated expression of prostate apoptosis response-4 (PAR-4) induces apoptosis in differentiating mouse embryonic stem (ES) cells. In embryoid body (EB) cells and the E15.5 stage of embryonic mouse brain, PAR-4 is expressed as two isoforms (38 and 33 kDa). Using mouse EB-derived RNA as a template we have cloned and characterized a novel isoform of PAR-4 (PAR-4/p33) that lacks exon 3 and shows a bona fide splice junction of exons 2 and 4. The molecular mass for PAR-4/p33 is estimated to be 33 kDa, corresponding to the short form found in the EB cells and E15.5 mouse brain. The fluorescent fusion protein of PAR-4/p33 is mainly found in the cytosol and is co-distributed with F-actin filaments, while that of the 38 kDa full length PAR-4/p38 is predominantly translocated to the nucleus. In contrast to the full length PAR-4 (PAR-4/p38), ectopic expression of PAR-4/p33 does not result in the activation of caspase 3 and the induction of apoptosis. PAR-4/p33 forms a complex with PAR-4/p38, which inhibits its nuclear translocation and the induction of apoptosis. PAR-4/p33 is suggested to be a dominant negative isoform of PAR-4/p38 and may regulate PAR-4-dependent apoptosis.  相似文献   

6.
Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulation to cell death are poorly understood. The present study examined the hypothesis that saturated fatty acids disrupt endoplasmic reticulum (ER) homeostasis and promote apoptosis in liver cells via accumulation of ceramide. H4IIE liver cells were exposed to varying concentrations of saturated (palmitate or stearate) or unsaturated (oleate or linoleate) fatty acids. ER homeostasis was monitored using markers of the ER stress response pathway, including phosphorylation of IRE1alpha and eIF2alpha, splicing of XBP1 mRNA, and expression of molecular chaperone (e.g., GRP78) and proapoptotic (CCAAT/enhancer-binding protein homologous protein) genes. Apoptosis was monitored using caspase activity and DNA laddering. Palmitate and stearate induced ER stress, caspase activity, and DNA laddering. Inhibition of caspase activation prevented DNA laddering. Unsaturated fatty acids did not induce ER stress or apoptosis. Saturated fatty acids increased ceramide concentration; however, inhibition of de novo ceramide synthesis did not prevent saturated fatty acid-induced ER stress and apoptosis. Unsaturated fatty acids rescued palmitate-induced ER stress and apoptosis. These data demonstrate that saturated fatty acids disrupt ER homeostasis and induce apoptosis in liver cells via mechanisms that do not involve ceramide accumulation.  相似文献   

7.
We have previously shown that accumulation of ceramide, triggered by hydrogen peroxide (H(2)O(2)), induces apoptosis of human airway epithelial (HAE) cells. Under oxidant exposure, a lung sphingomyelinase (SMase) is activated and displays continued ceramide generation and pro-apoptotic signaling, thus leading to the pathological apoptosis that causes lung injury. In a search for a specific SMase that is modulated by oxidative stress, we recently cloned nSMase2 from monkey lung tissue and HAE cells. Here, we show that this nSMase2 is up-regulated by an oxidant (H(2)O(2)) and is inhibited by an antioxidant (glutathione (GSH)). Moreover, nSMase2 subcellular localization is governed by oxidant exposure, which leads to its preferential trafficking to the plasma membrane, where it generates ceramide and induces apoptosis. On the other hand, exposure to GSH results in nSMase2 trafficking to the nucleus, where it neither generates ceramide nor induces apoptosis.  相似文献   

8.
Numerous studies have shown a beneficial effect of cardiosphere-derived cell (CDC) therapy on regeneration of injured myocardium. Paracrine signaling by CDC secreted exosomes may contribute to improved cardiac function. However, it has not yet been demonstrated by a genetic approach that exosome release contributes to the therapeutic effect of transplanted CDCs. By employing a lentiviral knockdown (KD) strategy against neutral spingomyelinase 2 (nSMase2), a crucial gene in exosome secretion, we have defined the role of physiologically secreted human CDC-derived exosomes on cardiac fibroblast, endothelial cell and primary cardiomyocyte proliferation, cell death, migration and angiogenesis using a series of in vitro coculture assays. We found that secretion of hCDC-derived exosomes was effectively inhibited by nSMase2 lentiviral KD and shRNAi expression was stable and constitutive. hCDC exosome release contributed to the angiogenic and pro-migratory effects of hCDCs on HUVECs, decreased proliferation of fibroblasts, and decreased apoptosis of cardiomyocytes. These in vitro reactions support a role for exosome secretion as a paracrine mechanism of stem cell-mediated cardiac repair in vivo. Importantly, we have established a novel tool to test constitutive inhibition of exosome secretion in stem cell populations in animal models of cardiac disease.  相似文献   

9.
Amyloid-beta peptide (Abeta) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Abeta induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Abeta-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Abeta and ceramide induced OLG death. In addition, Abeta activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Abeta cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Abeta-induced OLG death. Glutathione (GSH) precursors inhibited Abeta activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Abeta-induced death. These results suggest that Abeta induces OLG death by activating the nSMase-ceramide cascade via an oxidative mechanism.  相似文献   

10.
Poster Session 3     
Lipid analysis of gestational day E14.5 mouse brain revealed elevation of ceramide to a tissue concentration that induced apoptosis when added to the medium of neuroprogenitor cells grown in cell culture. Elevation of ceramide was coincident with the first appearance of β-series complex gangliosides (BCGs). Expression of BCGs by stable transfection of murine neuroblastoma (F-11) cells with sialyltransferase-II (ST2) resulted in a 70% reduction of apoptosis that was induced with the novel ceramide analog (NCA) N-oleoyl serinol (S18). This was most likely due to an 80% reduced expression of prostate apoptotis response-4 (PAR-4). PAR-4 expression and apoptosis were restored by preincubation of ST2-transfected cells with N-butyl deoxinojirimycin (NB-DNJ) or PD98059, two inhibitors of ganglioside biosynthesis or p42/44 MAPK-kinase, respectively. In sections of day E14.5 mouse brain, the intermediate zone showed intensive staining for complex gangliosides, but only low staining for apoptosis (TUNEL) and PAR-4. Apoptosis and PAR-4 expression, however, were elevated in the ventricular zone, which only weakly stained for complex gangliosides. Complex gangliosides may thus activate a cell survival mechanism that selectively protects developing neurons against ceramide-induced apoptosis by up-regulation of MAPK and reduction of PAR-4 expression. NCAs may be useful to analyse the molecular mechanisms that underlie or counteract ceramide-induced apoptosis during neuronal development.
Acknowledgements:   Supported by grants MH61934-04 (to E.B.) and NS11853 (to R.K.Y.).  相似文献   

11.
Airway epithelial cells are constantly exposed to environmental insults such as air pollution or tobacco smoke that may contain high levels of reactive nitrogen and reactive oxygen species. Previous work from our laboratory demonstrated that the reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)), specifically activates neutral sphingomyelinase 2 (nSMase2) to generate ceramide and induce apoptosis in airway epithelial cells. In the current study we examine the biological consequence of exposure of human airway epithelial (HAE) cells to reactive nitrogen species (RNS). Similar to ROS, we hypothesized that RNS may modulate ceramide levels in HAE cells and induce apoptosis. We found that nitric oxide (NO) exposure via the NO donor papa-NONOate, failed to induce apoptosis in HAE cells. However, when papa-NONOate was combined with a superoxide anion donor (DMNQ) to generate peroxynitrite (ONOO(-)), apoptosis was observed. Similarly pure ONOO(-)-induced apoptosis, and ONOO(-)-induced apoptosis was associated with an increase in cellular ceramide levels. Pretreatment with the antioxidant glutathione did not prevent ONOO(-)-induced apoptosis, but did prevent H(2)O(2)-induced apoptosis. Analysis of the ceramide generating enzymes revealed a differential response by the oxidants. We confirmed our findings that H(2)O(2) specifically activated a neutral sphingomyelinase (nSMase2). However, ONOO(-) exposure did not affect neutral sphingomyelinase activity; rather, ONOO(-) specifically activated an acidic sphingomyelinase (aSMase). The specificity of each enzyme was confirmed using siRNA to knockdown both nSMase2 and aSMase. Silencing nSMase2 prevented H(2)O(2)-induced apoptosis, but had no effect on ONOO(-)-induced apoptosis. On the other hand, silencing of aSMase markedly impaired ONOO(-)-induced apoptosis, but did not affect H(2)O(2)-induced apoptosis. These findings support our hypothesis that ROS and RNS modulate ceramide levels to induce apoptosis in HAE cells. However, we found that different oxidants modulate different enzymes of the ceramide generating machinery to induce apoptosis in airway epithelial cells. These findings add to the complexity of how oxidative stress promotes lung cell injury.  相似文献   

12.
Fetal alcohol syndrome (FAS) is caused by maternal alcohol consumption during pregnancy. The reason why specific embryonic tissues are sensitive toward ethanol is not understood. We found that in neural crest-derived cell (NCC) cultures from the first branchial arch of E10 mouse embryos, incubation with ethanol increases the number of apoptotic cells by fivefold. Apoptotic cells stain intensely for ceramide, suggesting that ceramide-induced apoptosis mediates ethanol damage to NCCs. Apoptosis is reduced by incubation with CDP-choline (citicoline), a precursor for the conversion of ceramide to sphingomyelin. Consistent with NCC cultures, ethanol intubation of pregnant mice results in ceramide elevation and increased apoptosis of NCCs in vivo. Ethanol also increases the protein level of prostate apoptosis response 4 (PAR-4), a sensitizer to ceramide-induced apoptosis. Prenatal ethanol exposure is concurrent with malformation of parietal bones in 20% of embryos at day E18. Meninges, a tissue complex derived from NCCs, is disrupted and generates reduced levels of TGF-β1, a growth factor critical for bone and brain development. Ethanol-induced apoptosis of NCCs leading to defects in the meninges may explain the simultaneous presence of cranial bone malformation and cognitive retardation in FAS. In addition, our data suggest that treatment with CDP-choline may alleviate the tissue damage caused by alcohol.  相似文献   

13.
Granulysin is a cytolytic molecule released by CTL via granule-mediated exocytosis. In a previous study we showed that granulysin induced apoptosis using both caspase- and ceramide-dependent and -independent pathways. In the present study we further characterize the biochemical mechanism for granulysin-induced apoptosis of tumor cells. Granulysin-induced death is significantly inhibited by Bcl-2 overexpression and is associated with a rapid (1-5 h) loss of mitochondrial membrane potential, which is not mediated by ceramide generation and is not inhibited by the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide generation induced by granulysin is a slow event, only observable at longer incubation times (12 h). Apoptosis induced by exogenous natural (C(18)) ceramide is truly associated with mitochondrial membrane potential loss, but contrary to granulysin, this event is inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide-induced apoptosis is also completely prevented by Bcl-2 overexpression. The nuclear morphology of cells dying after granulysin treatment in the presence of caspase inhibitors suggested the involvement of mitochondrial apoptosis-inducing factor (AIF) in granulysin-induced cell death. We demonstrate using confocal microscopy that AIF is translocated from mitochondria to the nucleus during granulysin-induced apoptosis. The majority of Bcl-2 transfectants are protected from granulysin-induced cell death, mitochondrial membrane potential loss, and AIF translocation, while a small percentage are not protected. In this small percentage the typical nuclear apoptotic morphology is delayed, being of the AIF type at 5 h time, while at longer times (12 h) the normal apoptotic morphology is predominant. These and previous results support a key role for the mitochondrial pathway of apoptosis, and especially for AIF, during granulysin-induced tumoral cell death.  相似文献   

14.
Fatty acids induce apoptosis in primary astrocytes by enhancing ceramide synthesis de novo. The possible role of the AMP-activated protein kinase (AMPK) in the control of apoptosis was studied in this model. Long-term stimulation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevented apoptosis. AICAR blunted fatty acid-mediated induction of serine palmitoyltransferase and ceramide synthesis de novo, without affecting fatty acid synthesis and oxidation. Prevention of ceramide accumulation by AICAR led to a concomitant blockade of the Raf-1/extracellular signal-regulated kinase cascade, which selectively mediates fatty acid-induced apoptosis. Data indicate that AMPK may protect cells from apoptosis induced by stress stimuli.  相似文献   

15.
Susceptibility to CD95 (Fas/APO-1)-mediated apoptosis in human glioma cells depends on CD95 expression and unknown factors that regulate signal transduction. Thus, LN-18 cells are highly sensitive to CD95 ligand (CD95L) whereas LN-229 cells require coexposure to inhibitors of RNA or protein synthesis for induction of apoptosis. Here, we report that caspase 8 and 3 activation, poly(ADP-ribose)polymerase cleavage and apoptosis are inhibited by the lipoxygenase inhibitor, nordihydroguaretic acid (NDGA), or ectopic expression of crm-A or bcl-2. CD95L-induced glioma cell apoptosis does not involve ceramide generation. Apoptosis induced by exogenous ceramide resembles CD95-mediated apoptosis in that bcl-2 is protective but differs in that NDGA and crm-A have no effect and in that cycloheximide (CHX) inhibits rather than potentiates ceramide-induced cell death. We conclude that caspase 8 and caspase 3 activation, but not ceramide generation, are required for CD95 ligand-induced apoptosis of glioma cells and that bcl-2, crm-A and NDGA all act upstream of caspases to inhibit apoptosis.  相似文献   

16.
The protein phosphatase inhibitor okadaic acid (OA) dose-dependently induced apoptosis in CHP-100 neuroepithelioma cells when administered for 24 h at concentrations ranging from 10 - 100 nM. Apoptosis was largely, albeit not completely, dependent on cystein protease (caspase) activation. CPP32 processing and poly(ADP-ribose) polymerase (PARP) cleavage started to be observed only at 20 nM OA; moreover, the caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD.fmk) (100 microM) had negligible effect on apoptosis induced by 10 nM OA, but rescued from death an increasing cell fraction as OA concentration was raised from 20 - 100 nM. Cell treatment for 24 h with OA induced ceramide accumulation; the phenomenon started to be evident at 20 nM OA and reached its maximum at 50 - 100 nM OA. In cells exposed to 50 nM OA, ceramide was already elevated by 5 h; at this time, however, PARP cleavage and apoptosis were not yet observed. Z-VAD.fmk (100 microM) had no effect on ceramide elevation induced by 50 nM OA within 5 h, but markedly reduced ceramide accumulation as the incubation was prolonged to 24 h. The latter phenomenon was accompanied by elevation of glucosylceramide levels, thus suggesting that a caspase-dependent reduction of glucosylceramide synthesis might contribute to late ceramide accumulation. Short-chain ceramide (30 microM) induced apoptosis in CHP-100 cells and its effect was additive with that evoked by OA (10 - 20 nM). These results suggest that ceramide generation might be an important mechanism through which sustained protein phosphatase inhibition induces caspase activation and apoptosis in CHP-100 cells.  相似文献   

17.
Recent observations support the importance of ceramide synthesis de novo in the induction of apoptosis. However, the downstream targets of de novo-synthesized ceramide are unknown. Here we show that palmitate incorporated into ceramide and induced apoptotic DNA fragmentation in astrocytes. These effects of palmitate were exacerbated when fatty acid breakdown was uncoupled and were not evident in neurons, which show a very low capacity to take up and metabolize palmitate. Palmitate-induced apoptosis of astrocytes was prevented by L-cycloserine and fumonisin B1, two inhibitors of ceramide synthesis de novo, and by PD098059, an inhibitor of the extracellular signal-regulated kinase (ERK) cascade. Accordingly, palmitate activated ERK by a process that was dependent on ceramide synthesis de novo and Raf-1, but independent of kinase suppressor of Ras. Other potential targets of ceramide in the control of cell fate, namely, c-Jun amino-terminal kinase, p38 mitogen-activated protein kinase, and protein kinase B, were not significantly affected in astrocytes exposed to palmitate. Results show that the Raf-1/ERK cascade is the selective downstream target of de novo-synthesized ceramide in the induction of apoptosis in astrocytes and also highlight the importance of ceramide synthesis de novo in apoptosis of astrocytes, which might have pathophysiological relevance.  相似文献   

18.
Apoptosis, Golgi fragmentation and elevated ceramide levels occur in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) neurons, lymphoblasts and fibroblasts. Our purpose was to examine whether apoptosis is the mechanism of cell death in JNCL. This was tested by analyzing caspase-dependent/independent pathways and autophagy, and caspase effects on ceramide and Golgi fragmentation. zVAD prevented caspase activation, but not all cell death. Inhibiting caspase-8 suppressed caspases more than inhibition of any other caspase. Inhibiting caspase-8/6 was synergistic. zVAD suppressed autophagy. 3-methyladenine suppressed caspase activation less than zVAD did. Blocking autophagy/caspase-8/or-6 was synergistic. Blocking autophagy/caspase-3/or-9 was not. Inhibiting caspase-9/3 suppressed autophagy. Golgi fragmentation was suppressed by zVAD, and blocked by CLN3. CLN3, not zVAD, prevented ceramide elevation. In conclusion: caspase-dependent/independent apoptosis and autophagy occur caspase-dependent pathways initiate autophagy Golgi fragmentation results from apoptosis ceramide elevation is independent of caspases, and CLN3 blocks all cell death, prevents Golgi fragmentation and elevation of ceramide in JNCL.  相似文献   

19.
We have reported that ceramide mediates binding of atypical protein kinase C (PKC) zeta to its inhibitor protein, PAR-4 (prostate apoptosis response-4), thereby inducing apoptosis in differentiating embryonic stem cells. Using a novel method of lipid vesicle-mediated affinity chromatography, we showed here that endogenous ceramide binds directly to the PKCzeta.PAR-4 complex. Ceramide and its analogs activated PKCzeta prior to binding to PAR-4, as determined by increased levels of phosphorylated PKCzeta and glycogen synthase kinase-3beta and emergence of a PAR-4-to-phosphorylated PKCzeta fluorescence resonance energy transfer signal that co-localizes with ceramide. Elevated expression and activation of PKCzeta increased cell survival, whereas expression of PAR-4 promoted apoptosis. This suggests that PKCzeta counteracts apoptosis, unless its ceramide-induced activation is compromised by binding to PAR-4. A luciferase reporter assay showed that ceramide analogs activate nuclear factor (NF)-kappaB unless PAR-4-dependent inhibition of PKCzeta suppresses NF-kappaB activation. Taken together, our results show that direct physical association with ceramide and PAR-4 regulates the activity of PKCzeta. They also indicate that this interaction regulates the activity of glycogen synthase kinase-3beta and NF-kappaB.  相似文献   

20.
Sphingomyelin is a major lipid in the bilayer of subcellular membranes of eukaryotic cells. Different sphingomyelinases catalyze the initial step in the catabolism of sphingomyelin, the hydrolysis to phosphocholine and ceramide. Sphingomyelinases have been postulated to generate ceramide as a lipophilic second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. To elucidate the function of the first cloned Mg(2+)-dependent, neutral sphingomyelinase (nSMase 1) in sphingomyelin catabolism and its potential role in signaling processes in a genetic and molecular approach, we have generated an nSMase 1-null mutant mouse line by gene targeting. The nSMase 1-deficient mice show an inconspicuous phenotype and no accumulation or changed metabolism of sphingomyelin or other lipids, despite grossly reduced nSMase activity in all organs except brain. We also addressed the recent proposal that nSMase 1 possesses lysophospholipase C activity. The unaltered metabolism of lysophosphatidylcholine or lyso-platelet-activating factor excludes the proposed role of nSMase 1 as a lysophospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号