首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The effects of biotic stresses on the contents of benzoxazinones (Bxs) were investigated in maize leaves. When the causal agent of southern corn leaf blight, Bipolaris maydis, was inoculated on the third leaf, the amount of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) increased, reaching a maximum level 48 h after inoculation. The inoculation of weakly pathogenic Curvularia lunata and non-pathogenic Alternaria alternata also resulted in accumulation of HDMBOA-Glc, and filtrates of the cultures of B. maydis, C. lunata and A. alternata also showed the accumulation of elicitor-active compounds by the fungi. Furthermore the infection of B. maydis induced formation of dark brown lesions, where most abundant Bx-related compound was 6-methoxy-2-benzoxazolinone (MBOA). The later is formed by degradation of DIMBOA and HDMBOA, whereas HDMBOA-Glc was most abundant in the surrounding green tissues. Among the Bx-related compounds, MBOA exhibited the strongest inhibition of the germination of the conidia and of the growth of germ tubes of B. maydis, C. lunata and A. alternata. In addition to fungal infection, the feeding by rice armyworm larvae resulted in HDMBOA-Glc accumulation. These findings are discussed in relation to the possible ecological relevance of the conversion of DIMBOA-Glc into HDMBOA-Glc.  相似文献   

2.
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class II hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.  相似文献   

3.
玉米种质资源抗弯孢菌叶斑病特性研究   总被引:4,自引:1,他引:3  
针对近年弯孢菌叶斑病日益严重的发生趋势,对1698份玉米种质(自交系、群体、杂交种以及特殊材料)进行了抗弯孢菌叶斑病鉴定.结果表明,中国玉米种质抗性较引进种质抗性好;不同省份所供种质抗性存在差异,北京、四川、广西种质总体抗性较好;在新选育的自交系中,鉴定出12份高抗材料;在当前培育的杂交种中,有22份高抗或抗弯孢菌叶斑病;玉米对弯孢菌叶斑病抗性在相同核基因、不同细胞质种质间无差异;玉米抗大斑病基因对抗弯孢菌叶斑病无效.  相似文献   

4.
Trichoderma atroviride SG3403 showed high biocontrol activity against southern corn leaf blight (SCLB; pathogen: Cochliobolus heterostrophus). T. atroviride SG3403 could cause death of C. heterostrophus race O hypha on plates. Spraying T. atroviride SG3403 conidia suspension over maize seedling leaves protected the corn from SCLB infection. Biocontrol effect lasted for 30 days in the field. Trichoderma strain was able to induce resistance response in corn leaves against pathogen infection. In corn leaves treated with T. atroviride SG3403, the enzyme activities of phenylalanine ammonia lyase (PAL) and superoxide dismutase (SOD) reached the highest at 24 h, enzyme activity of catalase (CAT) reached the highest at 36 h after inoculation of pathogen C. heterostrophus race O. RNA expression levels of Pal, Sod and Cat (which synthesis enzyme PAL, SOD and CAT) were also upregulated and corresponded to the enzyme activity at the same time point. Enzyme activities and corresponding genes expression induced by Trichoderma SG3403 was more obvious than that induced by pathogen only, which implies that T. atroviride SG3403 induced corn defense gene expression against pathogen infection. Thus, induced resistance mechanism was possibly involved in the biocontrol of SCLB by T. atroviride SG3403.  相似文献   

5.
新月弯孢子座的结构和形成条件   总被引:1,自引:0,他引:1  
新月弯孢 [Curvularialunata (Walk)Boed ]是近些年我国北方玉米主栽区新发生的弯孢菌叶斑病的致病菌 ,它以分生孢子进行重复侵染。在试验中 ,当用高粱培养基进行扩繁培养时 ,新月弯孢能产生一种无性繁殖体 子座。报道了子座产生的条件及子座的形态结构特征。  相似文献   

6.
7.
8.
ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.  相似文献   

9.
10.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

11.
A plant gene up-regulated at rust infection sites   总被引:8,自引:0,他引:8       下载免费PDF全文
Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.  相似文献   

12.
Colletotrichum graminicola is a hemibiotrophic fungus that causes anthracnose leaf blight (ALB) and anthracnose stalk rot (ASR) in maize. Despite substantial economic losses caused by these diseases, the defence mechanisms against this pathogen remain poorly understood. Several hormones are suggested to aid in defence against C. graminicola, such as jasmonic acid (JA) and salicylic acid (SA), but supporting genetic evidence was not reported. Green leaf volatiles (GLVs) are a group of well-characterized volatiles that induce JA biosynthesis in maize and are known to function in defence against necrotrophic pathogens. Information regarding the role of GLVs and JA in interactions with (hemi)biotrophic pathogens remains limited. To functionally elucidate GLVs and JA in defence against a hemibiotrophic pathogen, we tested GLV- and JA-deficient mutants, lox10 and opr7 opr8, respectively, for resistance to ASR and ALB and profiled jasmonates and SA in their stalks and leaves throughout infection. Both mutants were resistant and generally displayed elevated levels of SA and low amounts of jasmonates, especially at early stages of infection. Pretreatment with GLVs restored susceptibility of lox10 mutants, but not opr7 opr8 mutants, which coincided with complete rescue of JA levels. Exogenous methyl jasmonate restored susceptibility in both mutants when applied before inoculation, whereas methyl salicylate did not induce further resistance in either of the mutants, but did induce mutant-like resistance in the wild type. Collectively, this study reveals that GLVs and JA contribute to maize susceptibility to C. graminicola due to suppression of SA-related defences.  相似文献   

13.
14.
cry1A基因在转基因玉米中的遗传与表达(英文)   总被引:4,自引:0,他引:4  
通过Southern杂交、ELISA分析等方法 ,研究了cry1A基因在转基因玉米中的遗传与表达。结果表明 ,cry1A基因在转基因玉米中呈单位点显性基因遗传。cry1A杀虫蛋白在转基因玉米不同株系中的表达量存在显著差异 ;在转基因玉米同一植株不同组织中的表达量也明显不同 ,在叶片、苞叶等绿色组织中的表达量显著高于在髓、花丝等非绿色组织中的表达量 ;在玉米叶片中的表达量随着发育期的推进有上升的趋势 ;在研究的 3个转基因玉米株系中 ,cry1A杀虫蛋白的表达量在R2 、R3 、R4代之间无显著差异。  相似文献   

15.
对16个供试弯孢分离株根据其分生孢子的形态进行分类,其中12个为新月弯孢(Curvularia luna-ta),其余4个是画眉草弯孢(C.eragrostidis)。对这些分离株基因组DNA进行RAPD分析发现,一些分属于两种不同弯孢菌的分离株间比同种弯孢的分离株间具有更近的遗传距离,即具有更近的亲缘关系。因此,根据弯孢菌的形态分类和利用RAPD标记的分类结果存在不一致现象。  相似文献   

16.
17.
The agriculturally important genus Colletotrichum is an emerging model pathogen for studying defense in Arabidopsis. During the process of screening for novel pathogenic Colletotrichum isolates on Arabidopsis, we found significant differences in defense responses between detached and attached leaf assays. A near-adapted isolate Colletotrichum linicola A1 could launch a typical infection only on detached, but not attached, Arabidopsis leaves. Remarkably, resistance gene-like locus RCH1-mediated resistance in intact plants also was compromised in detached leaves during the attacks with the virulent reference isolate C. higginsianum. The differences in symptom development between the detached leaf and intact plant assays were further confirmed on defense-defective mutants following inoculation with C. higginsianum, where the greatest inconsistency occurred on ethylene-insensitive mutants. In intact Arabidopsis plants, both the salicylic acid- and ethylene-dependent pathways were required for resistance to C. higginsianum and were associated with induced expression of pathogenesis-related genes PR1 and PDF1.2. In contrast, disease symptom development in detached leaves appeared to be uncoupled from these defense pathways and more closely associated with senescence: an observation substantiated by coordinated gene expression analysis and disease symptom development, and chemically and genetically mimicking senescence.  相似文献   

18.
Expression of pathogenesis-related (PR) genes is part of the plant's natural defense response against pathogen attack. The PRms gene encodes a fungal-inducible PR protein from maize. Here, we demonstrate that expression of PRms in transgenic rice confers broad-spectrum protection against pathogens, including fungal (Magnaporthe oryzae, Fusarium verticillioides, and Helminthosporium oryzae) and bacterial (Erwinia chrysanthemi) pathogens. The PRms-mediated disease resistance in rice plants is associated with an enhanced capacity to express and activate the natural plant defense mechanisms. Thus, PRms rice plants display a basal level of expression of endogenous defense genes in the absence of the pathogen. PRms plants also exhibit stronger and quicker defense responses during pathogen infection. We also have found that sucrose accumulates at higher levels in leaves of PRms plants. Sucrose responsiveness of rice defense genes correlates with the pathogen-responsive priming of their expression in PRms rice plants. Moreover, pretreatment of rice plants with sucrose enhances resistance to M. oryzae infection. Together, these results support a sucrose-mediated priming of defense responses in PRms rice plants which results in broad-spectrum disease resistance.  相似文献   

19.
20.

Several programmes have been initiated for the development of maize varieties with resistance traits of Maize streak virus (MSV) by International Institute of Tropical Agriculture (IITA), Ibadan, and have been released to farmers and research scientists. Therefore, a survey was conducted in five states in the south west of Nigeria (Oyo, Ogun, Ondo, Ekiti and Osun) during the raining planting season to determine the incidence of MSV disease by visual examination and sero-diagnostic screening of symptomatic plants. The determination of infection rate of MSV disease by Cicadulina triangular on maize plant and its distribution from the lowest diseased leaf was also studied. The mean MSV disease incidence observed in these states was 35.95% which confirms the presence of MSV in the south west of Nigeria. Sero-diagnostic screening of virus-induced symptomatic leaf samples indicated that out of the 250 leaves sampled per state, 24.4% tested positive for MSV in Oyo, 25.6% in Ondo, 34% in Ogun, 19.6% in Ekiti and 38.8% in Osun. In two-week-old plants, symptoms developed on the leaves that were emerging at the time of inoculation, while in six-week-old plants, symptoms developed on the leaves directly below the emerging leaves irrespective of the number of C. triangular used. These suggest that the lowermost leaf with symptoms of the disease indicates the growth stage at which a plant was infected. There was a relationship between symptom expression and plant age which could be very effective when carrying out surveys to gather information for epidemiological studies. In addition, the 10 varieties of maize inoculated with MSV through C. triangular transmission showed no significant difference in disease severity over time irrespective of the number of C. triangular used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号