首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of genomic imprinting of PPP1R9A, NAP1L5 and PEG3 in pigs   总被引:1,自引:0,他引:1  
Jiang CD  Li S  Deng CY 《Genetika》2011,47(4):537-542
Imprinted genes play significant roles in the regulation of fetal growth and development, function of the placenta, and maternal nurturing behaviour in mammals. At present, few imprinted genes have been reported in pigs compared to human and mouse. In order to increase understanding of imprinted genes in swine, a polymorphism-based approach was used to assess the imprinting status of three porcine genes in 12 tissue types, obtained from F1 pigs of reciprocal crosses between Rongchang and Landrace pure breeds. In contrast to human and mouse homologues, porcine PPP1R9A was not imprinted, and was found to be expressed in all tissues examined. The expression of porcine NAP1L5 was detected in pituitary, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, fat, ovary, and uterus, but undetectable in heart. Furthermore, porcine NAP1L5 was paternally expressed in the tissues where it's expression was observed. For PEG3, pigs expressed the paternal allele in skeletal muscle, liver, spleen, kidney, and uterus, but biallele in heart, lung, fat, stomach, small intestine, and ovary. Our data indicate that tissue distribution of the three gene differs among mammals, and the imprinting of NAP1L5 and PEG3 is well conserved.  相似文献   

2.
Imprinted genes play significant roles in the regulation of fetal growth and development, function of the placenta, and maternal nurturing behaviour in mammals. At present, few imprinted genes have been reported in pigs compared to human and mouse. In order to increase understanding of imprinted genes in swine, a polymorphism-based approach was used to assess the imprinting status of three porcine genes in 12 tissue types, obtained from F1 pigs of reciprocal crosses between Rongchang and Landrace pure breeds. In contrast to human and mouse homologues, porcine PPP1R9A was not imprinted, and was found to be expressed in all tissues examined. The expression of porcine NAP1L5 was detected in pituitary, liver, spleen, lung, kiduey, stomach, small intestine, skeletal muscle, fat, ovary, and uterus, but undetectable in heart. Furthermore, porcine NAP1L5 was paternally expressed in the tissues where it’s expression was observed. For PEG3, pigs expressed the paternal allele in skeletal muscle, liver, spleen, kidney, and uterus, but biallele in heart, lung, fat, stomach, small intestine, and ovary. Our data indicate that tissue distribution of the three gene differs among mammals, and the imprinting of NAP1L5 and PEG3 is well conserved.  相似文献   

3.
Imprinted genes are expressed monoallelically depending on their parental origin, and play important roles in the regulation of fetal growth, development, and postnatal behavior. Most genes known to be imprinted have been identified and studied in the human and the mouse. However, there are only a small number of reported imprinted genes in pigs. Therefore, identification and characterization of more imprinted genes in pigs is useful for comparative analysis of genomic imprinting across species. In this study, we cloned the porcine PEG3, NAP1L5 and PPP1R9A genes. The imprinting status of these genes was determined using sequencing directly and single nucleotide polymorphisms (SNPs) identified in individuals from reciprocal cross of Meishan and Large White pigs. Imprinting analysis was carried out in 13 different tissues (skeletal muscle, fat, pituitary gland, heart, lung, liver, kidney, spleen, stomach, small intestine, uterus, ovary and testis) from twelve 2-month-old piglets. Imprinting analysis showed that PEG3 and NAP1L5 were exclusively expressed from the paternal allele whereas PPP1R9A was biallelically expressed in all tissues tested where the genes were expressed. The study is of interest to understand the conservation of genomic imprinting among mammals at the 3 loci.  相似文献   

4.
5.
Imprinted genes play an essential role in the regulation of fetal growth, development and function of the placenta, however only a limited number of imprinted genes have been studied in swine. In this study, we cloned and characterized porcine MAGEL2 (melanoma antigen-like gene 2), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 1,193 amino acids was isolated and two single nucleotide polymorphisms (SNPs) (g.2592A>C and g.3277T>C) in the coding region were identified. The reciprocal Yorkshire × Meishan F1 hybrid model and the RT-PCR/RFLP method were used to detect the imprinting status of porcine MAGEL2 gene at two developmental stages of day 30 and 65 of gestation. Imprinting analysis showed that porcine MAGEL2 was paternally expressed in day 65 fetal tissues, including heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, brain and placenta. Interestingly, we observed an imprinting variance of MAGEL2 gene in 30 dpc fetuses produced by the cross of Yorkshire boar × Meishan sow, in which seven heterozygous fetuses were monoallelically expressed from the paternal allele but two were biallelically expressed from both the paternal and maternal alleles. Association analysis in a Yorkshire × Meishan F2 resource population showed that the mutation of g.2592A>C was significantly associated with dressed carcass percentage (P < 0.05) and buttock fat thickness (P < 0.05). Our results suggest that MAGEL2, as a novel imprinted gene in pig, might be a candidate gene affecting carcass traits and could provide important information for the functional study of imprinted genes during porcine development.  相似文献   

6.
Imprinted genes play important roles in mammalian growth and development. However, reports on imprinted genes are limited in livestock. In this study, the complete ORF containing 289 amino acids of the porcine DLX5 gene was obtained. A C-to-T SNP mutation in exon 1 of the DLX5 gene was used to detect imprinting status with an RT-PCR/RFLP test (using HhaI) in eight heterozygous pigs from a population of Large White × Meishan F1 hybrids. Imprinting analysis showed that the porcine DLX5 gene was maternally expressed in skeletal muscle, fat, lung, spleen, stomach and small intestine, but not imprinted in heart, liver, kidney, uterus, ovary, testicle or pituitary. A PCR–RFLP test was also used to detect the polymorphism in 310 pigs of a Large White × Meishan F2 resource population. The statistical results showed significant association ( P  < 0.01) of the genotypes and fat meat percentage, carcass length, bone percentage, 6–7 rib fat thickness, average backfat thickness, thorax-waist fat thickness and buttock fat thickness.  相似文献   

7.
Imprinted genes play important roles in mammalian growth, development and behavior. The Rasgrf1 (Ras protein-specific guanine nucleotide exchange factor 1) gene has been identified as an imprinted gene in mouse and rat. In the present study, we detected its sequence, imprinting status and expression pattern in the domestic pigs. A 228 bp partial sequence located in exon 14 and a 193 bp partial sequence located in exon 1 of the Rasgrf1 gene in domestic pigs were obtained. A G/A transition, was identified in Rasgrf1 exon 14, and then, the reciprocal Berkshire × Wannan black F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine Rasgrf1 gene at the developmental stage of 1-day-old. The expression profile results indicated that the porcine Rasgrf1 mRNA was highly expressed in brain, pituitary and pancreas, followed by kidney, stomach, lung, testis, small intestine, ovary, spleen and liver, and at low levels of expression in longissimus dorsi, heart, and backfat. The expression levels of Rasgrf1 gene in brain, pituitary and pancreas tissues were significantly different between the two reciprocal F1 hybrids. Imprinting analysis showed that porcine Rasgrf1 gene was maternally expressed in the liver, small intestine, paternally expressed in the lung, but biallelically expressed in brain, heart, spleen, kidney, stomach, pancreas, backfat, testis, ovary, longissimus dorsi and pituitary tissues.  相似文献   

8.
Imprinted genes are expressed monoallelically depending on their parental origin, and play important roles in embryo survival and postnatal growth regulation. In this study, we characterized the porcine NECD (necdin), SNRPN (small nuclear ribonucleoprotein polypeptide N) and UBE3A (UBE3A ubiquitin protein ligase E3A) genes, analyzed their expression in nine tissues including liver, lung, small intestine, skeletal muscle, heart, kidney, spleen, inguinal lymph nodes and fat, and also examined their imprinting status in the skeletal muscle of neonate pigs. Results indicated that these three genes were highly homologous between pigs and cattle, being 95.02?% in nucleotide and 99.17?% in amino acid with the cattle SNRPN gene, and 96.46?% in nucleotide and 98.63?% in amino acid with the cattle UBE3A gene, respectively. The three genes were expressed in all the tissues investigated. Three single nucleotide polymorphisms (SNPs) in the coding region of these genes, i.e. g.263G>C, g.402T>C and g.340A>G for porcine NECD, SNRPN and UBE3A genes, respectively, were revealed; and imprinting analysis with which indicated that, in the skeletal muscle of neonate pigs, both NECD and SNRPN were maternally imprinted, while UBE3A was not imprinted.  相似文献   

9.
Imprinted genes play important roles in mammalian growth, development and behavior. In this study, we obtained 1568 bp mRNA sequence of porcine DIO3 (deiodinase, iodothyronine, type III), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 278 amino acids. The porcine DIO3 mRNA was expressed predominantly in backfat, mildly in liver, uterus, kidney, heart, small intestine, muscle and stomach, and almost absent in spleen and lung. A single nucleotide polymorphism in exon (A/C 687) was used to investigate the allele frequencies in different pig breeds and the imprinting status in porcine embryonic tissues. The results indicate that DIO3 was imprinted in all the tested tissues. Statistical analysis showed the DIO3 gene polymorphism was significantly associated with almost all the fat deposition and carcass traits, including lean meat percentage (LMP), fat meat percentage (FMP), ratio of lean to fat (RLF), shoulder fat thickness (SFT), sixth–seventh rib fat thickness (RFT), buttock fat thickness (BFT), loin eye area (LEA), and intramuscular fat (IMF).  相似文献   

10.
11.
12.
13.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

14.
15.
Protein content and mRNA expression ofextracellular superoxide dismutase (EC-SOD) were investigated in 16 mouse tissues. We developed a double-antibody sandwich ELISA using theaffinity-purified IgG against native mouse EC-SOD. EC-SOD could bedetected in all of the tissues examined (lung, kidney, testis, brownfat, liver, adrenal gland, pancreas, colon, white fat, thymus, stomach,spleen, heart, skeletal muscle, ileum, and brain, in decreasing order of content measured as µg/g wet tissue). Lung showed a markedly higher value of EC-SOD than other tissues. Interestingly, white fat hada high content of EC-SOD in terms of micrograms per milligram protein,which corresponded to that of lung. Kidney showed the strongestexpression of EC-SOD mRNA. Relatively strong expression of the mRNA wasobserved in lung, white fat, adrenal gland, brown fat, and testis.Heart and brain showed only weak signals, and no such expression couldbe detected in either digestive organs or skeletal muscle.Immunohistochemically, EC-SOD was localized mainly to connectivetissues and vascular walls in the tissues examined. Deep staining inthe cytosol was observed in the cortical tubular cells of kidney. Theseresults suggest that EC-SOD is distributed systemically inmice and that the physiological importance of this enzyme may be acompensatory adaptation to oxidative stress, particularly in lung andkidney.

  相似文献   

16.
17.
18.
Enzymes catalyzing peroxidase reaction of a lysosomal fraction in bone marrow, leucocytes, spleen, thyroid gland, stomach, kidney, heart, lungs, brain and skeletal muscle of mice were investigated by immunochemical methods. A high level of peroxidase activity was discovered in leucocytes, bone marrow, spleen, heart and lung, a lower activity appeared to be characteristic of liver, thyroid gland and kidney. The peroxidase activities in brain, skeletal muscle and stomach were low. The reaction of immunoprecipitation with myeloperoxidase-specific antiserum revealed considerable antigenic distinctions between the enzymes catalysing peroxidase reaction in various tissues of mice.  相似文献   

19.
Genomic imprinting at the mammalian Dlk1-Dio3 domain   总被引:4,自引:0,他引:4  
Genomic imprinting causes genes to be expressed or repressed depending on their parental origin. The majority of imprinted genes identified to date map in clusters and much of our knowledge of the mechanisms, function and evolution of imprinting have emerged from their analysis. The cluster of imprinted genes delineated by the delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (Dlk1-Dio3) is located on distal mouse chromosome 12 and human chromosome 14. Its developmental importance is exemplified by severe phenotypes associated with altered dosage of these genes in mice and humans. The domain contains three imprinted protein-coding genes, Dlk1, Rtl1 and Dio3, expressed from the paternally inherited chromosome and several imprinted large and small noncoding RNA genes expressed from the maternally inherited homolog. Here, we discuss the function and regulation of imprinting at this domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号