首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

2.
3.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-deficient cells were hypersensitive to DNA damaging agents. Assays to track telomere lengths and drug sensitivity of telomerase-deficient cells from spore colonies to survivors suggested a correlation between telomere shortening and bleomycin sensitivity. Our genetic studies demonstrated that this sensitivity depends on Mec1, which signals checkpoint activation, leading to prolonged cell-cycle arrest in senescent budding yeasts. Moreover, we also observed that when cells equipped with short telomeres, recruitments of homologous recombination proteins, Rad51 and Rad52, were reduced at an HO-endonuclease-catalyzed double-strand break (DSB), while their associations were increased at chromosome ends. These results suggested that the sensitive phenotype may be attributed to the sequestration of repair proteins to compromised telomeres, thus limiting the repair capacity at bona fide DSB sites.  相似文献   

4.
Vertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y’ amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y’ amplification occurs by different pathways: in Tel1+ tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50. Generation of telomeric G-tail, which is cell cycle regulated, depends on the MRX (Mre11-Rad50-Xrs2) complex in tlc1h cells or is MRX-independent in tlc1h tel1Δ mutants. Unexpectedly, we observe telomere elongation in tlc1h lacking Rad51 that seems to act as a telomerase competitor for binding to telomeric G-tails. Overall, our results show that Tel1 and Rad51 have multiple roles in the maintenance of vertebrate-like telomeres in yeast, supporting the idea that they may participate to evolutionary conserved telomere protection mechanism/s acting at uncapped telomeres.  相似文献   

5.
6.
Rad51C is a central component of two complexes formed by five Rad51 paralogs in vertebrates. These complexes are involved in repairing DNA double-strand breaks through homologous recombination. Despite accumulating evidence suggesting that the paralogs may prevent aneuploidy by controlling centrosome integrity, Rad51C's role in maintaining chromosome stability remains unclear. Here we demonstrate that Rad51C deficiency leads to both centrosome aberrations in an ATR-Chk1-dependent manner and increased aneuploidy in human cells. While it was reported that Rad51C deficiency did not cause centrosome aberrations in interphase in hamster cells, such aberrations were observed in interphase in HCT116 cells with Rad51C dysfunction. Caffeine treatment and down-regulation of ATR, but not that of ATM, reduced the frequency of centrosome aberrations in the mutant cells. Silencing of Rad51C by RNA interference in HT1080 cells resulted in similar aberrations. Treatment with a Chk1 inhibitor and silencing of Chk1 also reduced the frequency in HCT116 mutants. Accumulation of Chk1 at the centrosome and nuclear foci of γH2AX were increased in the mutants. Moreover, the mutant cells had a higher frequency of aneuploidy. These findings indicate that the ATR-Chk1 pathway plays a role in increased centrosome aberrations induced by Rad51C dysfunction.  相似文献   

7.
An intrachromosomal recombination assay that monitors events between alleles of the ade2 gene oriented as inverted repeats was developed. Recombination to adenine prototrophy occurred at a rate of 9.3 X 10(-5)/cell/generation. Of the total recombinants, 50% occurred by gene conversion without crossing over, 35% by crossover and 15% by crossover associated with conversion. The rate of recombination was reduced 3,000-fold in a rad52 mutant, but the distribution of residual recombination events remained similar to that seen in the wild type strain. In rad51 mutants the rate of recombination was reduced only 4-fold. In this case, gene conversion events unassociated with a crossover were reduced 18-fold, whereas crossover events were reduced only 2.5-fold. A rad51 rad52 double mutant strain showed the same reduction in the rate of recombination as the rad52 mutant, but the distribution of events resembled that seen in rad51. From these observations it is concluded that (i) RAD52 is required for high levels of both gene conversions and reciprocal crossovers, (ii) that RAD51 is not required for intrachromosomal crossovers, and (iii) that RAD51 and RAD52 have different functions, or that RAD52 had functions in addition to those of the Rad51/Rad52 protein complex.  相似文献   

8.
Guillet M  Boiteux S 《The EMBO journal》2002,21(11):2833-2841
In Saccharomyces cerevisiae, mutations in APN1, APN2 and either RAD1 or RAD10 genes are synthetic lethal. In fact, apn1 apn2 rad1 triple mutants can form microcolonies of approximately 300 cells. Expression of Nfo, the bacterial homologue of Apn1, suppresses the lethality. Turning off the expression of Nfo induces G(2)/M cell cycle arrest in an apn1 apn2 rad1 triple mutant. The activation of this checkpoint is RAD9 dependent and allows residual DNA repair. The Mus81/Mms4 complex was identified as one of these back-up repair activities. Furthermore, inactivation of Ntg1, Ntg2 and Ogg1 DNA N-glycosylase/AP lyases in the apn1 apn2 rad1 background delayed lethality, allowing the formation of minicolonies of approximately 10(5) cells. These results demonstrate that, under physiological conditions, endogenous DNA damage causes death in cells deficient in Apn1, Apn2 and Rad1/Rad10 proteins. We propose a model in which endogenous DNA abasic sites are converted into 3'-blocked single-strand breaks (SSBs) by DNA N-glycosylases/AP lyases. Therefore, we suggest that the essential and overlapping function of Apn1, Apn2, Rad1/Rad10 and Mus81/Mms4 is to repair 3'-blocked SSBs using their 3'-phosphodiesterase activity or their 3'-flap endonuclease activity, respectively.  相似文献   

9.
During meiosis, recombination events that occur between homologous chromosomes help prepare the chromosome pairs for proper disjunction in meiosis I. The concurrent action of the Rad51 and Dmc1 recombinases is necessary for an interhomolog bias. Notably, the activity of Rad51 is tightly controlled, so as to minimize the use of the sister chromatid as recombination partner. We demonstrated recently that Hed1, a meiosis-specific protein in Saccharomyces cerevisiae, restricts the access of the recombinase accessory factor Rad54 to presynaptic filaments of Rad51. We now show that Hed1 undergoes self-association in a Rad51-dependent manner and binds ssDNA. We also find a strong stabilizing effect of Hed1 on the Rad51 presynaptic filament. Biochemical and genetic analyses of mutants indicate that these Hed1 attributes are germane for its recombination regulatory and Rad51 presynaptic filament stabilization functions. Our results shed light on the mechanism of action of Hed1 in meiotic recombination control.  相似文献   

10.
11.
We have previously shown that the RAD50, RAD52, MRE11, XRS2, and HDF1 genes of Saccharomyces cervisiae are involved in the formation of deletions by illegitimate recombination on a monocentric plasmid. In this study, we investigated the effects of mutations of these genes on formation of deletions of a dicentric plasmid, in which DNA double-strand breaks are expected to occur frequently because the two centromeres are pulled to opposite poles in mitosis. We transformed yeast cells with a dicentric plasmid, and after incubation for a few division cycles, cells carrying deleted plasmids were detected using negative selection markers. Deletions occurred at a higher frequency than on the monocentric plasmid and there were short regions of homology at the recombination junctions as observed on the monocentric plasmid. In rad50, mre11, xrs2, and hdf1 mutants, the frequency of occurrence of deletions was reduced by about 50-fold, while in the rad52 mutant, it was comparable to that in the wild-type strain. The end-joining functions of Rad50, Mre11, Xrs2, and Hdf1, suggest that these proteins play important roles in the joining of DNA ends produced on the dicentric plasmid during mitosis. Received: 30 October 1996 / Accepted: 28 February 1997  相似文献   

12.
The use of CDK4/6 inhibitors in the treatment of a wide range of cancers is an area of ongoing investigation. Despite their increasing clinical use, there is limited understanding of the determinants of sensitivity and resistance to these drugs. Recent data have cast doubt on how CDK4/6 inhibitors arrest proliferation, provoking renewed interest in the role(s) of CDK4/6 in driving cell proliferation. As the use of CDK4/6 inhibitors in cancer therapies becomes more prominent, an understanding of their effect on the cell cycle becomes more urgent. Here, we investigate the mechanism of action of CDK4/6 inhibitors in promoting cell cycle arrest. Two main models explain how CDK4/6 inhibitors cause G1 cell cycle arrest, which differ in their dependence on the CDK inhibitor proteins p21 and p27. We have used live and fixed single-cell quantitative imaging, with inducible degradation systems, to address the roles of p21 and p27 in the mechanism of action of CDK4/6 inhibitors. We find that CDK4/6 inhibitors can initiate and maintain a cell cycle arrest without p21 or p27. This work clarifies our current understanding of the mechanism of action of CDK4/6 inhibitors and has implications for cancer treatment and patient stratification.  相似文献   

13.
Majka J  Burgers PM 《DNA Repair》2005,4(10):1189-1194
The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans) is an early response factor to DNA damage in a signal transduction pathway leading to the activation of the checkpoint system and eventually to cell cycle arrest. These subunits show structural similarities with the replication clamp PCNA and indeed, it was demonstrated in vitro that Rad17/3/1 could be loaded onto DNA by checkpoint specific clamp loader Rad24-RFC, analogous to the PCNA-RFC clamp-clamp loader system. We have studied the interactions between the checkpoint clamp subunits and the activity of partial clamp complexes. We find that none of the possible partial complexes makes up a clamp that can be loaded onto DNA by Rad24-RFC. In agreement, overexpression of DDC1 or RAD17 in a MEC3Delta strain, or of MEC3 or RAD17 in a DDC1Delta strain shows no rescue of damage sensitivity.  相似文献   

14.
A RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein.  相似文献   

15.
The human Rad51 protein, a eukaryotic ortholog of the bacterial RecA protein, is a key enzyme that functions in homologous recombination and recombinational repair of double strand breaks. The Rad51 protein contains two flexible loops, L1 and L2, which are proposed to be sites for DNA binding, based on a structural comparison with RecA. In the present study, we performed mutational and fluorescent spectroscopic analyses on the L1 and L2 loops to examine their role in DNA binding. Gel retardation and DNA-dependent ATP hydrolysis measurements revealed that the substitution of the tyrosine residue at position 232 (Tyr232) within the L1 loop with alanine, a short side chain amino acid, significantly decreased the DNA-binding ability of human Rad51, without affecting the protein folding or the salt-induced, DNA-independent ATP hydrolysis. Even the conservative replacement with tryptophan affected the DNA binding, indicating that Tyr232 is involved in DNA binding. The importance of the L1 loop was confirmed by the fluorescence change of a tryptophan residue, replacing the Asp231, Ser233, or Gly236 residue, upon DNA binding. The alanine replacement of phenylalanine at position 279 (Phe279) within the L2 loop did not affect the DNA-binding ability of human Rad51, unlike the Phe203 mutation of the RecA L2 loop. The Phe279 side chain may not be directly involved in the interaction with DNA. However, the fluorescence intensity of the tryptophan replacing the Rad51-Phe279 residue was strongly reduced upon DNA binding, indicating that the L2 loop is also close to the DNA-binding site.  相似文献   

16.
Y Bai  A P Davis  L S Symington 《Genetics》1999,153(3):1117-1130
With the use of an intrachromosomal inverted repeat as a recombination reporter, we have shown that mitotic recombination is dependent on the RAD52 gene, but reduced only fivefold by mutation of RAD51. RAD59, a component of the RAD51-independent pathway, was identified previously by screening for mutations that reduced inverted-repeat recombination in a rad51 strain. Here we describe a rad52 mutation, rad52R70K, that also reduced recombination synergistically in a rad51 background. The phenotype of the rad52R70K strain, which includes weak gamma-ray sensitivity, a fourfold reduction in the rate of inverted-repeat recombination, elevated allelic recombination, sporulation proficiency, and a reduction in the efficiency of mating-type switching and single-strand annealing, was similar to that observed for deletion of the RAD59 gene. However, rad52R70K rad59 double mutants showed synergistic defects in ionizing radiation resistance, sporulation, and mating-type switching. These results suggest that Rad52 and Rad59 have partially overlapping functions and that Rad59 can substitute for this function of Rad52 in a RAD51 rad52R70K strain.  相似文献   

17.
18.
Selenium (Se) is a chemo-preventive agent that has been shown to have a protective role against cancer. The inorganic form of Se, sodium selenite (Na2SeO3), has frequently been included in various chemo-prevention studies, and this commercially available form of Se is used as dietary supplement by the public. Because high doses of this Se compound can be toxic, the underlying molecular mechanisms of sodium selenite toxicity need to be elucidated. Recently, we have reported that sodium selenite is acting as an oxidizing agent in the budding yeast Saccharomyces cerevisiae, producing oxidative damage to DNA. This pro-oxidative activity of sodium selenite likely accounted for the observed DNA double-strand breaks (DSB) and yeast cell death. In this study we determine the genetic factors that are responsible for repair of sodium selenite-induced DSB. We report that the Rad52 protein is indispensable for repairing sodium selenite-induced DSB, suggesting a fundamental role of homologous recombination (HR) in this repair process. These results provide the first evidence that HR may have a fundamental role in the repair of sodium selenite-induced toxic DNA lesions.  相似文献   

19.
Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains.  相似文献   

20.
Genes encoding the serologically cross-reactive HLA-B51 and HLA-Bw52 molecules were isolated and the exons sequenced. HLA-B51 genes obtained from Caucasian and Oriental individuals were identical. HLA-Bw52 differs from HLA-B51 by four nucleotide substitutions in exon 2 encoding the alpha 1 domain. These comprise one isolated silent substitution in codon 23 and a cluster of three coding substitutions in codons 63 and 67. Amino acid substitutions of N----E at position 63 and F----S at position 67 are the only differences between HLA-B51 and HLA-Bw52 and these residues are postulated to form HLA-B51 specific epitopes. HLA-B51 could have been formed from HLA-Bw52 by the combination of a genetic exchange with HLA-B8 and a point mutation. Similarity of HLA-B51 and HLA-Bw52 with HLA-Bw58 suggest they also share a common ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号